249 research outputs found

    A census of ultra-compact dwarf galaxies in nearby galaxy clusters

    Full text link
    Ultra-compact dwarf galaxies (UCDs) are predominatly found in the cores of nearby galaxy clusters. Besides the Fornax and Virgo cluster, UCDs have also been confirmed in the twice as distant Hydra I and Centaurus clusters. Having (nearly) complete samples of UCDs in some of these clusters allows the study of the bulk properties with respect to the environment they are living in. Moreover, the relation of UCDs to other stellar systems in galaxy clusters, like globular clusters and dwarf ellipticals, can be investigated in detail with the present data sets. The general finding is that UCDs seem to be a heterogenous class of objects. Their spatial distribution within the clusters is in between those of globular clusters and dwarf ellipticals. In the colour-magnitude diagram, blue/metal-poor UCDs coincide with the sequence of nuclear star clusters, whereas red/metal-rich UCDs reach to higher masses and might have originated from the amalgamation of massive star cluster complexes in merger or starburst galaxies.Comment: 6 pages, 3 figures; to appear in "A Universe of Dwarf Galaxies: Observations, Theories, Simulations", held in Lyon, France (June 14-18, 2010), eds. M. Koleva, P. Prugniel & I. Vauglin, EAS Series (Paris: EDP

    A search for ultra-compact dwarf galaxies in the NGC 1023 group of galaxies

    Full text link
    We present a photometric search for UCD candidates in the nearby galaxy group NGC 1023 (d=11 Mpc) -- the poorest environment searched for UCDs yet --, based on wide field imaging with CFHT. After photometric and morphological selection, we obtain a sample of 21 UCD candidates with -12<M_V<-11 mag, if located at NGC 1023's distance. From spectroscopy taken at Calar Alto observatory, we identify the UCD candidate in closest projection to NGC 1023 as an emission line background galaxy. Our photometric data show that in the NGC 1023 group, the mass spectrum of analogs to Fornax/Virgo UCD is restricted to about 1/4 of the maximum Fornax/Virgo UCD mass. More spectroscopy is needed to further constrain the mass range of UCDs in this galaxy group.Comment: 5 pages, 4 figures, to appear in the proceedings of ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    Predicting Performance - A Dynamic Capability View

    Get PDF
    Emerald has removed the embargo period across all journals. The full text of the article may therefore become visible within your IR as soon as the final version has been published in the journal.Production planning and resource allocation are ongoing issues that organisations face on a day-to-day basis. The study addresses these issues by developing a dynamic performance measurement system (DPMS) to effectively re-deploy manufacturing resources, thus enhancing the decision-making process in optimising performance output. The study also explores the development of dynamic capabilities through exploitation of the organisational tacit knowledge. The study was conducted using 6-stage action research for developing DPMS with real-time control of independent variables on the production lines to study the impact. The DPMS was developed using a hybrid approach of discrete event simulation (DES) and system dynamics (SD) by using the historical as well as live data from the action case organisation. Through the development of DPMS and by combining the explicit and tacit knowledge, this study demonstrated an understanding of using cause and effect analysis in manufacturing systems to predict performance. Such a DPMS creates agility in decision making and significantly enhances the decision-making process under uncertainty. The research also explored how the resources can be developed and maintained into dynamic capabilities to sustain competitive advantage. The present study provides a starting-point for further research in other manufacturing organisations to generalise findings. The originality of the DPMS model comes from the approach used to build the cause and effect analysis by exploiting the tacit knowledge and making it dynamic by adding modelling capabilities. Originality also comes from the hybrid approach used in developing the DPMS

    Star Cluster collisions - a formation scenario for the Extended Globular Cluster Scl-dE1 GC1

    Full text link
    Recent observations of the dwarf elliptical galaxy Scl-dE1 (Sc22) in the Sculptor group of galaxies revealed an extended globular cluster (Scl-dE1 GC1), which exhibits an extremely large core radius of about 21.2 pc. The authors of the discovery paper speculated on whether this object could reside in its own dark matter halo and/or if it might have formed through the merging of two or more star clusters. In this paper, we present N-body simulations to explore thoroughly this particular formation scenario. We follow the merger of two star clusters within dark matter haloes of a range of masses (as well as in the absence of a dark matter halo). In order to obtain a remnant which resembles the observed extended star cluster, we find that the star formation efficiency has to be quite high (around 33 per cent) and the dark matter halo, if present at all, has to be of very low mass, i.e. raising the mass to light ratio of the object within the body of the stellar distribution by at most a factor of a few. We also find that expansion of a single star cluster following mass loss provides another viable formation path. Finally, we show that future measurements of the velocity dispersion of this system may be able to distinguish between the various scenarios we have explored.Comment: accepted by MNRAS, 9 pages, 2 figures, 9 table

    A search for massive UCDs in the Centaurus Galaxy Cluster

    Full text link
    We recently initiated a search for ultra-compact dwarf galaxies (UCDs) in the Centaurus galaxy cluster (Mieske et al. 2007), resulting in the discovery of 27 compact objects with -12.2<M_V<-10.9 mag. Our overall survey completeness was 15-20% within 120 kpc projected clustercentric distance. In order to better constrain the luminosity distribution of the brightest UCDs in Centaurus, we continue our search by substantially improving our survey completeness specifically in the regime M_V<-12 mag (V_0<21.3 mag). Using VIMOS at the VLT, we obtain low-resolution spectra of 400 compact objects with 19.3<V_0<21.3 mag (-14<M_V<-12 mag at the Centaurus distance) in the central 25' of the Centaurus cluster, which corresponds to a projected radius of ~150 kpc. Our survey yields complete area coverage within ~120 kpc. For 94% of the sources included in the masks we successfully measure a redshift. Due to incompleteness in the slit assignment, our final completeness in the area surveyed is 52%. Among our targets we find three new UCDs in the magnitude range -12.2<M_V<-12 mag, hence at the faint limit of our survey. One of them is covered by archival HST WFPC2 imaging, yielding a size estimate of r_h <= 8-9 pc. At 95% confidence we can reject the hypothesis that in the area surveyed there are more than 2 massive UCDs with M_V<-12.2 mag and r_eff <=70 pc. Our survey hence confirms the extreme rareness of massive UCDs. We find that the radial distributions of Centaurus and Fornax UCDs with respect to their host clusters' centers agree within the 2 sigma level.Comment: 9 pages, 7 figures, accepted as Research Note for A&

    A search for ultra-compact dwarf galaxies in the Centaurus galaxy cluster

    Full text link
    Aim: To extend the investigations of ultra-compact dwarf galaxies (UCDs) beyond the well studied Fornax and Virgo clusters. Methods: We measured spectroscopic redshifts of about 400 compact object candidates with 19.2 < V < 22.4 mag in the central region of the Centaurus galaxy cluster (d=43Mpc), using VIMOS@VLT. The luminosity range of the candidates covers that of bright globular clusters (GCs) and of UCDs in Fornax and Virgo. Results: We confirm the cluster membership of 27 compact objects, covering an absolute magnitude range -12.2 < M_V < -10.9 mag. We do not find counterparts to the two very large and bright UCDs in Fornax and Virgo with M_V=-13.5 mag, possibly due to survey incompleteness. The compact objects' distribution in magnitude and space is consistent with that of the GC population. Their kinematics and spatial distribution associate them to the central galaxies rather than to the overall cluster potential. The compact objects have a mean metallicity consistent with that of the metal-rich globular cluster sub-population. Compact objects with high S/N spectra exhibit solar [alpha/Fe] abundances, consistent with typical dwarf elliptical galaxy values and unlike galactic bulge globular clusters. HST based size estimates for a sub-sample of eight compact objects reveal the existence of one very large object with half-light radius r_h around 30 pc, having M_V=-11.6 mag (~10^7 M_sun). This source shows super-solar [alpha/Fe] abundances. Seven further sources are only marginally larger than typical GCs with r_h in the range 4 to 10 pc. Conclusions: We consider the largest compact object found to be the only bona-fide UCD detected in our study. In order to improve our understanding of UCDs in Centaurus, a significant increase of our survey completeness is necessary.Comment: 11 pages, 12 figures, accepted for publication in A&

    The Nature of UCDs: Internal Dynamics from an Expanded Sample and Homogeneous Database

    Full text link
    We have obtained high-resolution spectra of 23 ultra-compact dwarf galaxies (UCDs) in the Fornax cluster with -10.4>M_V>-13.5 mag (10^6<M/M_*<10^8), using FLAMES/Giraffe at the VLT. This is the largest homogeneous data set of UCD internal dynamics assembled to date. We derive dynamical M/L ratios for 15 UCDs covered by HST imaging. In the M_V-sigma plane, UCDs with M_V<-12 mag are consistent with the extrapolated Faber-Jackson relation for luminous ellipticals, while fainter UCDs are closer to the extrapolated globular cluster (GC) relation. At a given metallicity, Fornax UCDs have on average 30-40% lower M/L ratios than Virgo UCDs, suggesting possible differences in age or dark matter content between Fornax and Virgo UCDs. For our sample of Fornax UCDs we find no significant correlation between M/L ratio and mass. We combine our data with available M/L ratio measurements of compact stellar systems with 10^4<M/M_*<10^8, and normalise all M/L estimates to solar metallicity. We find that UCDs (M > 2*10^6 M_*) have M/L ratios twice as large as GCs (M < 2*10^6 M_*). We show that stellar population models tend to under-predict dynamical M/L ratios of UCDs and over-predict those of GCs. Considering the scaling relations of stellar spheroids, UCDs align well along the 'Fundamental Manifold', constituting the small-scale end of the galaxy sequence. The alignment for UCDs is especially clear for r_e >~ 7 pc, which corresponds to dynamical relaxation times that exceed a Hubble time. In contrast, GCs exhibit a broader scatter and do not appear to align along the manifold. We argue that UCDs are the smallest dynamically un-relaxed stellar systems, with M > 2*10^6 M_* and 7<r_e<100 pc. Future studies should aim at explaining the elevated M/L ratios of UCDs and the environmental dependence of their properties.Comment: 17 pages, 14 figures, accepted for publication in A&A. V3 taking into account proof corrections: Table 3 radial velocity entries corrected by heliocentric correction, updated sigma entries in Table 5 for a few CenA sources, updated references for G1 and omega Ce

    Compact stellar systems in the Fornax cluster: a UV perspective

    Full text link
    In recent years, increasing evidence for chemical complexity and multiple stellar populations in massive globular clusters (GCs) has emerged, including extreme horizontal branches (EHBs) and UV excess. Our goal is to improve our understanding of UV excess in the regime of both massive GCs and ultra-compact dwarf galaxies (UCDs). To this end, we use deep archival GALEX data of the central Fornax cluster to measure NUV and FUV magnitudes of UCDs and massive GCs. We obtain NUV photometry for a sample of 35 compact objects with -13.5<M_V<-10 mag. Of those, 21 objects also have FUV photometry. Roughly half of the sources fall into the UCD luminosity regime (M_V <=-11 mag). We find that seven out of 17 massive Fornax GCs exhibit a NUV excess with respect to expectations from stellar population models, even for models with enhanced Helium abundance. This suggests that not only He-enrichment has contributed to forming the EHB population of these GCs. The GCs extend to stronger UV excess than GCs in M31 and massive GCs in M87, at the 97% confidence level. Most of the UCDs with FUV photometry also show evidence for UV excess, but their UV colours can be matched by isochrones with enhanced Helium abundances and old ages 12-14 Gyrs. We find that Fornax compact objects with X-ray emission detected from Chandra images are almost disjunct in colour from compact objects with GALEX UV detection, with only one X-ray source among the 35 compact objects. However, since this source is one of the three most UV bright GCs, we cannot exclude that the physical processes causing X-ray emission also contribute to some of the observed UV excess.Comment: Research Note, 7 pages, 3 figures, accepted for publication in A&
    • …
    corecore