30 research outputs found
L'utilisation des POMDP pour les résumés multi-documents orientés par une thématique
National audienceLâobjectif principal du rĂ©sumĂ© multi-documents orientĂ© par une thĂ©matique est de gĂ©nĂ©rer un rĂ©sumĂ© Ă partir de documents sources en rĂ©ponse Ă une requĂȘte formulĂ©e par lâutilisateur. Cette tĂąche est difficile car il nâexiste pas de mĂ©thode efficace pour mesurer la satisfaction de lâutilisateur. Cela introduit ainsi une incertitude dans le processus de gĂ©nĂ©ration de rĂ©sumĂ©. Dans cet article, nous proposons une modĂ©lisation de lâincertitude en formulant notre systĂšme de rĂ©sumĂ© comme un processus de dĂ©cision markovien partiellement observables (POMDP) car dans de nombreux domaines on a montrĂ© que les POMDP permettent de gĂ©rer efficacement les incertitudes. Des expĂ©riences approfondies sur les jeux de donnĂ©es du banc dâessai DUC ont dĂ©montrĂ© lâefficacitĂ© de notre approche
A reinforcement learning formulation to the complex question answering problem
International audienceWe use extractive multi-document summarization techniques to perform complex question answering and formulate it as a reinforcement learning problem. Given a set of complex questions, a list of relevant documents per question, and the corresponding human generated summaries (i.e. answers to the questions) as training data, the reinforcement learning module iteratively learns a number of feature weights in order to facilitate the automatic generation of summaries i.e. answers to previously unseen complex questions. A reward function is used to measure the similarities between the candidate (machine generated) summary sentences and the abstract summaries. In the training stage, the learner iteratively selects the important document sentences to be included in the candidate summary, analyzes the reward function and updates the related feature weights accordingly. The final weights are used to generate summaries as answers to unseen complex questions in the testing stage. Evaluation results show the effectiveness of our system. We also incorporate user interaction into the reinforcement learner to guide the candidate summary sentence selection process. Experiments reveal the positive impact of the user interaction component on the reinforcement learning framework
SemClinBr -- a multi institutional and multi specialty semantically annotated corpus for Portuguese clinical NLP tasks
The high volume of research focusing on extracting patient's information from
electronic health records (EHR) has led to an increase in the demand for
annotated corpora, which are a very valuable resource for both the development
and evaluation of natural language processing (NLP) algorithms. The absence of
a multi-purpose clinical corpus outside the scope of the English language,
especially in Brazilian Portuguese, is glaring and severely impacts scientific
progress in the biomedical NLP field. In this study, we developed a
semantically annotated corpus using clinical texts from multiple medical
specialties, document types, and institutions. We present the following: (1) a
survey listing common aspects and lessons learned from previous research, (2) a
fine-grained annotation schema which could be replicated and guide other
annotation initiatives, (3) a web-based annotation tool focusing on an
annotation suggestion feature, and (4) both intrinsic and extrinsic evaluation
of the annotations. The result of this work is the SemClinBr, a corpus that has
1,000 clinical notes, labeled with 65,117 entities and 11,263 relations, and
can support a variety of clinical NLP tasks and boost the EHR's secondary use
for the Portuguese language
Overview of ImageCLEF 2018: Challenges, Datasets and Evaluation
This paper presents an overview of the ImageCLEF 2018 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) Labs 2018. ImageCLEF is an ongoing initiative (it started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval with the aim of providing information access to collections of images in various usage scenarios and domains. In 2018, the 16th edition of ImageCLEF ran three main tasks and a pilot task: (1) a caption prediction task that aims at predicting the caption of a figure from the biomedical literature based only on the figure image; (2) a tuberculosis task that aims at detecting the tuberculosis type, severity and drug resistance from CT (Computed Tomography) volumes of the lung; (3) a LifeLog task (videos, images and other sources) about daily activities understanding and moment retrieval, and (4) a pilot task on visual question answering where systems are tasked with answering medical questions. The strong participation, with over 100 research groups registering and 31 submitting results for the tasks, shows an increasing interest in this benchmarking campaign
ImageCLEF 2019: Multimedia Retrieval in Lifelogging, Medical, Nature, and Security Applications
This paper presents an overview of the foreseen ImageCLEF 2019 lab that will be organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2019. ImageCLEF is an ongoing evaluation initiative (started in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2019, the 17th edition of ImageCLEF will run four main tasks: (i) a Lifelog task (videos, images and other sources) about daily activities understanding, retrieval and summarization, (ii) a Medical task that groups three previous tasks (caption analysis, tuberculosis prediction, and medical visual question answering) with newer data, (iii) a new Coral task about segmenting and labeling collections of coral images for 3D modeling, and (iv) a new Security
task addressing the problems of automatically identifying forged content and retrieve hidden information. The strong participation, with over 100 research groups registering and 31 submitting results for the tasks in 2018 shows an important interest in this benchmarking campaign and we expect the new tasks to attract at least as many researchers for 2019
ImageCLEF 2020: Multimedia Retrieval in Lifelogging, Medical, Nature, and Security Applications
This paper presents an overview of the 2020 ImageCLEF lab that will be organized as part of the Conference and Labs of the Evaluation Forum - CLEF Labs 2020 in Thessaloniki, Greece. ImageCLEF is an ongoing evaluation initiative (run since 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2020, the 18th edition of ImageCLEF will organize four main tasks: (i) a Lifelog task (videos, images and other sources) about daily activity understanding, retrieval and summarization, (ii) a Medical task that groups three previous tasks (caption analysis, tuberculosis prediction, and medical visual question answering) with new data and adapted tasks, (iii) a Coral task about segmenting and labeling collections of coral images for 3D modeling, and a new (iv) Web user interface task addressing the problems of detecting and recognizing hand drawn website UIs (User Interfaces) for generating automatic code. The strong participation, with over 235 research groups registering and 63 submitting over 359 runs for the tasks in 2019 shows an important interest in this benchmarking campaign. We expect the new tasks to attract at least as many researchers for 2020
Overview of the ImageCLEF 2021: Multimedia Retrieval in Medical, Nature, Internet and Social Media Applications
This paper presents an overview of the ImageCLEF 2021 lab that was organized as part of the Conference and Labs of the Evaluation Forum â CLEF Labs 2021. ImageCLEF is an ongoing evaluation initiative (first run in 2003) that promotes the evaluation of technologies for annotation, indexing and retrieval of visual data with the aim of providing information access to large collections of images in various usage scenarios and domains. In 2021, the 19th edition of ImageCLEF runs four main tasks: (i) a medical task that groups three previous tasks, i.e., caption analysis, tuberculosis prediction, and medical visual question answering and question generation, (ii) a nature coral task about segmenting and labeling collections of coral reef images, (iii) an Internet task addressing the problems of identifying hand-drawn and digital user interface components, and (iv) a new social media aware task on estimating potential real-life effects of online image sharing. Despite the current pandemic situation, the benchmark campaign received a strong participation with over 38 groups submitting more than 250 runs