1,721 research outputs found

    Lynx X-Ray Observatory: Response to the First Astro 2020 Decadal Survey Request for Information

    Get PDF
    This document serves as the Lynx Teams response to the first Request For Information (RFI) from the 2020 Decadal Survey in Astronomy and Astrophysics. Detailed answers to all of the questions asked in this RFI can be found in the Lynx Concept Study Report, Supplementary Technology Roadmaps, and the Lynx Cost Book

    Seasonal Patterns in Stable Isotope and Fatty Acid Profiles of Southern Stingrays (Hypanus americana) at Stingray City Sandbar, Grand Cayman

    Get PDF
    Ecotourism opportunities in the marine environment often rely heavily on provisioning to ensure the viewing of cryptic species by the public. However, intentional feeding of wildlife can impact numerous aspects of an animals’ behavior and ecology. Southern stingrays (Hypanus americana) provisioned at Stingray City Sandbar (SCS) in Grand Cayman have altered diel activity patterns and decreased measures of health. This study looked at seasonal changes in stable isotope (SI) and fatty acid (FA) profiles of provisioned stingrays at SCS. Plasma δ15N was higher in male stingrays (11.86 ± 1.71‰) compared to females (10.70 ± 1.71‰). Lower values for δ15N in males and females were measured in October during low tourist season, suggesting stingrays may be forced to rely on native prey items to supplement the decreased amount of provisioned squid available during this time. Plasma FA profiles were significantly different between sexes and across sampling time points, with FAs 22:6n3, 16:0, 20:5n3, 18:1n3C, 18:0 and 18:1n9T contributing to dissimilarity scores between groups. Dietary FAs primarily contributed to differences between males and females lending further evidence to differences in foraging patterns at SCS, likely due to intraspecific competition. Further, canonical analysis of principal coordinates (CAP) analysis of FA profiles suggest similar diets during peak tourist season and differences in diet between males and females during the low season. This study demonstrates alterations in feeding ecology in stingrays at SCS which is of critical importance for effective management of the SCS aggregation

    Lynx X-Ray Observatory: An Overview

    Get PDF
    Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget

    Marine heatwaves threaten global biodiversity and the provision of ecosystem services

    Get PDF
    The global ocean has warmed substantially over the past century, with far-reaching implications for marine ecosystems 1 . Concurrent with long-term persistent warming, discrete periods of extreme regional ocean warming (marine heatwaves, MHWs) have increased in frequency 2 . Here we quantify trends and attributes of MHWs across all ocean basins and examine their biological impacts from species to ecosystems. Multiple regions in the Pacific, Atlantic and Indian Oceans are particularly vulnerable to MHW intensification, due to the co-existence of high levels of biodiversity, a prevalence of species found at their warm range edges or concurrent non-climatic human impacts. The physical attributes of prominent MHWs varied considerably, but all had deleterious impacts across a range of biological processes and taxa, including critical foundation species (corals, seagrasses and kelps). MHWs, which will probably intensify with anthropogenic climate change 3 , are rapidly emerging as forceful agents of disturbance with the capacity to restructure entire ecosystems and disrupt the provision of ecological goods and services in coming decades. © 2019, The Author(s), under exclusive licence to Springer Nature Limited

    Induction of neural crest stem cells from Bardet–Biedl syndrome patient derived hiPSCs

    Get PDF
    Neural crest cells arise in the embryo from the neural plate border and migrate throughout the body, giving rise to many different tissue types such as bones and cartilage of the face, smooth muscles, neurons, and melanocytes. While studied extensively in animal models, neural crest development and disease have been poorly described in humans due to the challenges in accessing embryonic tissues. In recent years, patient-derived human induced pluripotent stem cells (hiPSCs) have become easier to generate, and several streamlined protocols have enabled robust differentiation of hiPSCs to the neural crest lineage. Thus, a unique opportunity is offered for modeling neurocristopathies using patient specific stem cell lines. In this work, we make use of hiPSCs derived from patients affected by the Bardet–Biedl Syndrome (BBS) ciliopathy. BBS patients often exhibit subclinical craniofacial dysmorphisms that are likely to be associated with the neural crest-derived facial skeleton. We focus on hiPSCs carrying variants in the BBS10 gene, which encodes a protein forming part of a chaperonin-like complex associated with the cilium. Here, we establish a pipeline for profiling hiPSCs during differentiation toward the neural crest stem cell fate. This can be used to characterize the differentiation properties of the neural crest-like cells. Two different BBS10 mutant lines showed a reduction in expression of the characteristic neural crest gene expression profile. Further analysis of both BBS10 mutant lines highlighted the inability of these mutant lines to differentiate toward a neural crest fate, which was also characterized by a decreased WNT and BMP response. Altogether, our study suggests a requirement for wild-type BBS10 in human neural crest development. In the long term, approaches such as the one we describe will allow direct comparison of disease-specific cell lines. This will provide valuable insights into the relationships between genetic background and heterogeneity in cellular models. The possibility of integrating laboratory data with clinical phenotypes will move us toward precision medicine approaches

    The Allometry of Host-Pathogen Interactions

    Get PDF
    Understanding the mechanisms that control rates of disease progression in humans and other species is an important area of research relevant to epidemiology and to translating studies in small laboratory animals to humans. Body size and metabolic rate influence a great number of biological rates and times. We hypothesize that body size and metabolic rate affect rates of pathogenesis, specifically the times between infection and first symptoms or death.We conducted a literature search to find estimates of the time from infection to first symptoms (t(S)) and to death (t(D)) for five pathogens infecting a variety of bird and mammal hosts. A broad sampling of diseases (1 bacterial, 1 prion, 3 viruses) indicates that pathogenesis is controlled by the scaling of host metabolism. We find that the time for symptoms to appear is a constant fraction of time to death in all but one disease. Our findings also predict that many population-level attributes of disease dynamics are likely to be expressed as dimensionless quantities that are independent of host body size.Our results show that much variability in host pathogenesis can be described by simple power functions consistent with the scaling of host metabolic rate. Assessing how disease progression is controlled by geometric relationships will be important for future research. To our knowledge this is the first study to report the allometric scaling of host/pathogen interactions

    Fire as a fundamental ecological process: Research advances and frontiers

    Get PDF
    © 2020 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire-dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study. Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above-ground ecology, (d) fire effects on below-ground ecology, (e) fire behaviour and (f) fire ecology modelling. We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts. Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives

    Neuroliberalism:Cognition, context, and the geographical bounding of rationality

    Get PDF
    Focusing on the rise of the behavioural sciences within the design and implementation of public policy, this paper introduces the concept of neuroliberalism and suggests that it could offer a creative context within which to interpret related governmental developments. Understanding neuroliberaism as a system of government that targets the more-than rational aspects of human behaviour, this paper considers the particular contribution that geographical theories of context and spatial representation can make to a critical analysis of this evolving governmental project.authorsversionPeer reviewe
    corecore