499 research outputs found

    Stochastic Resonance in Chaotic Spin-Wave Dynamics

    Full text link
    We report the first experimental observation of noise-free stochastic resonance by utilizing the intrinsic chaotic dynamics of the system. To this end we have investigated the effect of an external periodic modulation on intermittent signals observed by high power ferromagnetic resonance in yttrium iron garnet spheres. Both the signal-to-noise ratio and the residence time distributions show the characteristic features of stochastic resonance. The phenomena can be explained by means of a one-dimensional intermittent map. We present analytical results as well as computer simulations.Comment: 4 pages, revtex, 5 eps figures included, also available "via www http://athene.fkp.physik.th-darmstadt.de/public/wolfram.html" or "via ftp ftp://athene.fkp.physik.th-darmstadt.de/pub/publications/wolfram/", Phys. Rev. Lett. in pres

    Arrays of Regenerated Fiber Bragg Gratings in Non-Hydrogen-Loaded Photosensitive Fibers for High-Temperature Sensor Networks

    Get PDF
    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks

    A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice

    Get PDF
    BACKGROUND: Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. CONCLUSIONS/SIGNIFICANCE: Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches

    Protein resonance assignment by BSH‐CP‐based 3D solid‐state NMR experiments: A practical guide

    Get PDF
    Solid-state NMR (ssNMR) spectroscopy has evolved into a powerful method to obtain structural information and to study the dynamics of proteins at atomic resolution and under physiological conditions. The method is especially well suited to investigate insoluble and noncrystalline proteins that cannot be investigated easily by X-ray crystallography or solution NMR. To allow for detailed analysis of ssNMR data, the assignment of resonances to the protein atoms is essential. For this purpose, a set of three-dimensional (3D) spectra needs to be acquired. Band-selective homo-nuclear cross-polarization (BSH-CP) is an effective method for magnetization transfer between carbonyl carbon (CO) and alpha carbon (CA) atoms, which is an important transfer step in multidimensional ssNMR experiments. This tutorial describes the detailed procedure for the chemical shift assignment of the backbone atoms of 13C–15N-labeled proteins by BSH-CP-based 13C-detected ssNMR experiments. A set of six 3D experiments is used for unambiguous assignment of the protein backbone as well as certain side-chain resonances. The tutorial especially addresses scientists with little experience in the field of ssNMR and provides all the necessary information for protein assignment in an efficient, time-saving approach.European Research Council http://dx.doi.org/10.13039/501100000781Max Planck Society http://dx.doi.org/10.13039/501100004189Leibniz‐Forschungsinstitut für Molekulare PharmakologiePeer Reviewe

    Temperature-dependent morphology-electron mobility correlations of naphthalene diimide-indacenodithiophene copolymers prepared via direct arylation polymerization

    Get PDF
    A series of defect-free n-type copolymers poly(naphthalene diimide-alt-indacenodithiophene) P(NDI-IDT) comprising alternating naphthalene diimide (NDI) and indacenodithiophene (IDT) units is prepared using atom-economic direct arylation polycondensation (DAP)
    corecore