120 research outputs found

    Virus-induced changes in root volatiles attract soil nematode vectors to infected plants

    Get PDF
    Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.</p

    Uptake of silicon in barley under contrasting drought regimes

    Get PDF
    Purpose: Silicon (Si) accumulation in plant tissues plays a vital role in alleviating biotic and abiotic stresses, including drought. Temperate regions are predicted to experience reductions in the quantity and frequency of rainfall events, potentially impacting plant Si uptake via the transpiration stream. Despite the importance for predicting plant responses to Si amendments, the effects of changes in rainfall patterns on Si uptake in cereals have not been characterised. Methods: Five watering regimes were applied based on predicted precipitation scenarios, varying the quantity of water delivered (ambient, 40% or 60% reduction) and watering frequency (40% reduction in quantity, applied 50% or 25% of ambient frequency), and the effects on growth and leaf Si concentrations of a barley landrace and cultivar were determined. Results: Reductions in the quantity of water reduced plant growth and yield, whereas reducing the watering frequency had little impact on growth, and in some cases partially ameliorated the negative effects of drought. Reductions in quantity of water lowered leaf Si concentrations in both the cultivar and landrace, although this effect was alleviated under the drought/deluge watering regime. The landrace had greater leaf Si concentration than the cultivar regardless of watering regime, and under ambient watering deposited Si in all cells between trichomes, whereas the cultivar exhibited gaps in Si deposition. Conclusion: The impact of future reductions in rainfall on barley productivity will depend upon how the water is delivered, with drought/deluge events likely to have smaller effects on yield and on Si uptake than continuous drought

    Hedgerow rejuvenation management affects invertebrate communities through changes to habitat structure

    Get PDF
    Hedgerows are an important semi-natural habitat for invertebrates and other wildlife within agricultural landscapes. Hedgerow quality can be greatly affected either by over- or under-management. Neglect of hedgerows is an increasingly important issue as traditional management techniques such as hedgelaying become economically unviable. In the UK, funding for hedge management is available under agri-environment schemes but relatively little is known about how this impacts on wider biodiversity. We used a randomised block experiment to investigate how habitat structural change, arising from a range of techniques to rejuvenate hedgerows (including more economic/mechanised alternatives to traditional hedgelaying), affected invertebrate abundance and diversity. We combined digital image analysis with estimates of foliage biomass and quality to show which aspects of hedge structure were most affected by the rejuvenation treatments. All investigated aspects of habitat structure varied considerably with management type, though the abundance of herbivores and predators was affected primarily by foliage density. Detritivore abundance was most strongly correlated with variation in hedge gap size. The results suggest that habitat structure is an important organising force in invertebrate community interactions and that management technique may affect trophic groups differently. Specifically we find that alternative methods of hedgerow rejuvenation could support abundances of invertebrates comparable or even higher than traditional hedgelaying, with positive implications for the restoration of a larger area of hedgerow habitat on a limited budget

    The effect of multiple host species on a keystone parasitic plant and its aphid herbivores

    Get PDF
    1. The exploitation of shared resources by diverse organisms underpins the structure of ecological communities. Hemiparasitic plants and the insect herbivores feeding on them both rely, directly and indirectly, on the resources supplied by the parasite's host plant. Therefore, the identity and number of host plant species providing these resources is likely to be critical for parasite and herbivore performance. 2. We tested the effect of single and multiple host species on the biomass of the generalist parasitic plant Rhinanthus minor and the abundance of its aphid (Aphis gossypii) herbivores. 3. Parasite biomass was proportional to the number of haustorial connections to host roots and was determined by host species identity rather than host functional group. Host species identity was also an important influence on aphid population size, and parasites attached to Lotus corniculatus experienced a considerable reduction in aphid herbivory. 4. The effects on the parasite attaching to multiple hosts depended on the combination of species present. However, host mixtures generally benefitted aphids by diluting the negative effects of particular host species. 5. Our findings suggest that the specificity of host attachment alters the impact of this keystone parasitic plant on its own herbivores and, potentially, on the wider plant and herbivore community

    Enhanced weathering in the U.S. Corn Belt delivers carbon removal with agronomic benefits

    Full text link
    Enhanced weathering (EW) with crushed basalt on farmlands is a promising scalable atmospheric carbon dioxide removal strategy that urgently requires performance assessment with commercial farming practices. Our large-scale replicated EW field trial in the heart of the U.S. Corn Belt shows cumulative time-integrated carbon sequestration of 15.4 +/- 4.1 t CO2 ha-1 over four years, with additional emissions mitigation of ~0.1 - 0.4 t CO2,e ha-1 yr-1 for soil nitrous oxide, a potent long-lived greenhouse gas. Maize and soybean yields increased 12-16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals and global food and soil security

    Mapping regional risks from climate change for rainfed rice cultivation in India

    Get PDF
    Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~ 50% of rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional level (~ 18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of precipitation to evapotranspiration (PER), maximum and minimum temperatures (Tmax and Tmin), and total rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occurrence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were important for determining the extent of rice cultivation. Our models project that 15%–40% of current rainfed rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However, our models project considerable variation across India in the impact of future climate change: eastern and northern India are the locations most at risk, but parts of central and western India may benefit from increased precipitation. Hence our CEM and BRT models agree on the locations most at risk, but there is less consensus about the degree of risk at these locations. Our results help to identify locations where livelihoods of low-income farmers and regional food security may be threatened in the next few decades by climate changes. The use of more drought-resilient rice varieties and better irrigation infrastructure in these regions may help to reduce these impacts and reduce the vulnerability of farmers dependent on rainfed cropping

    Arbuscular Mycorrhizal Fungi and Plant Chemical Defence : Effects of Colonisation on Aboveground and Belowground Metabolomes

    Get PDF
    Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms

    Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits

    Get PDF
    Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha−1 y−1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha−1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security
    • …
    corecore