1,282 research outputs found

    Forbidden Line Emission in the Eccentric Spectroscopic Binaries DQ Tauri and UZ Tauri E Monitored over an Orbital Period

    Full text link
    We present echelle spectroscopy of the close pre-main-sequence binary star systems DQ Tau and UZ Tau-E. Over a 16 day time interval we acquired 14 nights of spectra for DQ Tau and 12 nights of spectra for UZ Tau-E. This represents the entire phase of DQ Tau, and 63 percent of the phase of UZ Tau-E. As expected, photospheric lines such as Li I 6707 clearly split into two components as the primary and secondary orbit one another, as did the permitted line He I 5876. Unlike the photospheric features, the forbidden lines of [O I] 6300 and [O I] 5577, retain the same shape throughout the orbit. Therefore these lines must originate outside of the immediate vicinity of the two stars and any circumstellar disks that participate in the orbital motion of the stars.Comment: 14 pages including 6 figures, aastex preprint, accepted to Astronomical Journa

    A Survey of Irradiated Pillars, Globules, and Jets in the Carina Nebul

    Get PDF
    We present wide-field, deep narrowband H2_2, Brγ\gamma, Hα\alpha, [S II], [O III], and broadband I and K-band images of the Carina star formation region. The new images provide a large-scale overview of all the H2_2 and Brγ\gamma emission present in over a square degree centered on this signature star forming complex. By comparing these images with archival HST and Spitzer images we observe how intense UV radiation from O and B stars affects star formation in molecular clouds. We use the images to locate new candidate outflows and identify the principal shock waves and irradiated interfaces within dozens of distinct areas of star-forming activity. Shocked molecular gas in jets traces the parts of the flow that are most shielded from the intense UV radiation. Combining the H2_2 and optical images gives a more complete view of the jets, which are sometimes only visible in H2_2. The Carina region hosts several compact young clusters, and the gas within these clusters is affected by radiation from both the cluster stars and the massive stars nearby. The Carina Nebula is ideal for studying the physics of young H II regions and PDR's, as it contains multiple examples of walls and irradiated pillars at various stages of development. Some of the pillars have detached from their host molecular clouds to form proplyds. Fluorescent H2_2 outlines the interfaces between the ionized and molecular gas, and after removing continuum, we detect spatial offsets between the Brγ\gamma and H2_2 emission along the irradiated interfaces. These spatial offsets can be used to test current models of PDRs once synthetic maps of these lines become available.Comment: Accepted in the Astronomical Journa

    Laboratory Experiments, Numerical Simulations, and Astronomical Observations of Deflected Supersonic Jets: Application to HH 110

    Full text link
    Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets, and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. Laboratory jets can be studied for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range where the codes must perform well. In this paper we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in 3-D, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface.Comment: Full resolution figures available at http://sparky.rice.edu/~hartigan/pub.html To appear in Ap

    Astrophysical jets: observations, numerical simulations, and laboratory experiments

    Get PDF
    This paper provides summaries of ten talks on astrophysical jets given at the HEDP/HEDLA-08 International Conference in St. Louis. The talks are topically divided into the areas of observation, numerical modeling, and laboratory experiment. One essential feature of jets, namely, their filamentary (i.e., collimated) nature, can be reproduced in both numerical models and laboratory experiments. Another essential feature of jets, their scalability, is evident from the large number of astrophysical situations where jets occur. This scalability is the reason why laboratory experiments simulating jets are possible and why the same theoretical models can be used for both observed astrophysical jets and laboratory simulations

    On the structure and stability of magnetic tower jets

    Get PDF
    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic-energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch (MCL) models, magnetic fields dominate only at scales 100\lesssim 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform 3-D ideal MHD AMR simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.Comment: 16 pages, 11 figures, published in ApJ: ApJ, 757, 6

    Chandra observation of Cepheus A: The diffuse emission of HH 168 resolved

    Full text link
    X-ray emission from massive stellar outflows has been detected in several cases. We present a Chandra observation of HH 168 and show that the soft X-ray emission from a plasma of 0.55 keV within HH 168 is diffuse. The X-ray emission is observed on two different scales: Three individual, yet extended, regions are embedded within a complex of low X-ray surface brightness. Compared to the bow shock the emission is displaced against the outflow direction. We show that there is no significant contribution from young stellar objects (YSOs) and discuss several shock scenarios that can produce the observed signatures. We establish that the X-ray emission of HH 168 is excited by internal shocks in contrast to simple models, which expect the bow shock to be the most X-ray luminous.Comment: 8 pages, 5 figures, accepted for publication in A&

    Unveiling extremely veiled T Tauri stars

    Get PDF
    Photospheric absorption lines in classical T Tauri stars (CTTS) are weak compared to normal stars. This so-called veiling is normally identified with an excess continuous emission formed in shock-heated gas at the stellar surface below the accretion streams. We have selected four stars (RW Aur A, RU Lup, S CrA NW and S CrA SE) with unusually strong veiling to make a detailed investigation of veiling versus stellar brightness and emission line strengths for comparisons to standard accretion models. We have monitored the stars photometrically and spectroscopically at several epochs. In standard accretion models a variable accretion rate will lead to a variable excess emission. Consequently, the stellar brightness should vary accordingly. We find that the veiling of absorption lines in these stars is strongly variable and usually so large that it would require the release of several stellar luminosities of potential energy. At states of very large line dilution, the correspondingly large veiling factors derived correlate only weakly with brightness. Moreover, the emission line strengths violate the expected trend of veiling versus line strength. The veiling can change dramatically in one night, and is not correlated with the phase of the rotation periods found for two stars. We show that in at least three of the stars, when the veiling becomes high, the photospheric lines become filled-in by line emission, which produces large veiling factors unrelated to changes in any continuous emission from shocked regions. We also consider to what extent extinction by dust and electron scattering in the accretion stream may affect veiling measures in CTTS. We conclude that the degree of veiling cannot be used as a measure of accretion rates in CTTS with rich emission line spectra.Comment: Accepted for publication in A&A Letters. New language-edited version. (4 pages, 3 figures

    Jets and Outflows From Star to Cloud: Observations Confront Theory

    Full text link
    In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important role in mediating the physics of assembling stars both individually and globally? We address this question by reviewing the current state of observations and their key points of contact with theory. Our review of jet/outflow phenomena is organized into three length-scale domains: Source and Disk Scales (0.11020.1-10^2 au) where the connection with protostellar and disk evolution theories is paramount; Envelope Scales (10210510^2-10^5 au) where the chemistry and propagation shed further light on the jet launching process, its variability and its impact on the infalling envelope; Parent Cloud Scales (10510610^5-10^6 au) where global momentum injection into cluster/cloud environments become relevant. Issues of feedback are of particular importance on the smallest scales where planet formation regions in a disk may be impacted by the presence of disk winds, irradiation by jet shocks or shielding by the winds. Feedback on envelope scales may determine the final stellar mass (core-to-star efficiency) and envelope dissipation. Feedback also plays an important role on the larger scales with outflows contributing to turbulent support within clusters including alteration of cluster star formation efficiencies (feedback on larger scales currently appears unlikely). A particularly novel dimension of our review is that we consider results on jet dynamics from the emerging field of High Energy Density Laboratory Astrophysics (HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully magnetized, hypersonic, radiative outflows.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Star Spot Induced Radial Velocity Variability in LkCa 19

    Full text link
    We describe a new radial velocity survey of T Tauri stars and present the first results. Our search is motivated by an interest in detecting massive young planets, as well as investigating the origin of the brown dwarf desert. As part of this survey, we discovered large-amplitude, periodic, radial velocity variations in the spectrum of the weak line T Tauri star LkCa 19. Using line bisector analysis and a new simulation of the effect of star spots on the photometric and radial velocity variability of T Tauri stars, we show that our measured radial velocities for LkCa19 are fully consistent with variations caused by the presence of large star spots on this rapidly rotating young star. These results illustrate the level of activity-induced radial velocity noise associated with at least some very young stars. This activity-induced noise will set lower limits on the mass of a companion detectable around LkCa 19, and similarly active young stars.Comment: ApJ accepted, 27 pages, 12 figures, aaste
    corecore