Modern theoretical models of astrophysical jets combine accretion, rotation,
and magnetic fields to launch and collimate supersonic flows from a central
source. Near the source, magnetic field strengths must be large enough to
collimate the jet requiring that the Poynting flux exceeds the kinetic-energy
flux. The extent to which the Poynting flux dominates kinetic energy flux at
large distances from the engine distinguishes two classes of models. In
magneto-centrifugal launch (MCL) models, magnetic fields dominate only at
scales ≲100 engine radii, after which the jets become
hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD)
magnetic tower models, the field dominates even out to much larger scales. To
compare the large distance propagation differences of these two paradigms, we
perform 3-D ideal MHD AMR simulations of both HD and PFD stellar jets formed
via the same energy flux. We also compare how thermal energy losses and
rotation of the jet base affects the stability in these jets. For the
conditions described, we show that PFD and HD exhibit observationally
distinguishable features: PFD jets are lighter, slower, and less stable than HD
jets. Unlike HD jets, PFD jets develop current-driven instabilities that are
exacerbated as cooling and rotation increase, resulting in jets that are
clumpier than those in the HD limit. Our PFD jet simulations also resemble the
magnetic towers that have been recently created in laboratory astrophysical jet
experiments.Comment: 16 pages, 11 figures, published in ApJ: ApJ, 757, 6