75 research outputs found

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Coulomb dissociation of 16O into 4He and 12C

    Get PDF
    We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Control Group Paradigms in Studies Investigating Acute Effects of Exercise on Cognitive Performance–An Experiment on Expectation-Driven Placebo Effects

    No full text
    Introduction: Many studies report improvements in cognitive performance following acute endurance exercise compared to control group treatment. These cognitive benefits are interpreted as a result of a physiological response to exercise. However, it was also hypothesized that expectation-driven placebo effects account for these positive effects. The purpose of this study was to investigate the differences between expectations for cognitive benefits toward acute endurance exercise and multiple control group treatments.Methods: Healthy individuals (N = 247, 24.26 ± 3.88 years) were randomized to eight different groups watching videos of a moderate, a vigorous exercise treatment or one control group treatment (waiting, reading, video-watching, stretching, myofascial release workout, and very light exercise). Then, they were introduced to three commonly used cognitive test procedures in acute exercise-cognition research (Stroop-test, Trail-Making-test, Free-recall-task). Participants rated the effect they would expect on their performance in those tasks, if they had received the treatment shortly before the task, on an 11-point Likert scale.Results: No significantly different expectations for cognitive benefits toward acute moderate exercise and control group treatments could be revealed. Participants expected significantly worse performance following vigorous exercise compared to following waiting and stretching for all cognitive tests. Significantly worse performance after vigorous exercise compared to after very light exercise was expected for Stroop and Free-recall. For Free-recall, participants expected worse performance after vigorous exercise compared to myofascial release training as well.Conclusion: Our results indicate that expectation-driven placebo effects are unlikely to cause the reported greater cognitive improvements following acute moderate and vigorous endurance exercise compared to following common control group treatments

    Protocol for the "Chemobrain in Motion - study" (CIM - study) : a randomized placebo-controlled trial of the impact of a high-intensity interval endurance training on cancer related cognitive impairments in women with breast cancer receiving first-line chemotherapy

    No full text
    Background: Up to 80% of breast cancer patients suffer from Cancer Related Cognitive Impairments (CRCI). Exercise is suggested as a potential supportive care option to reduce cognitive decline in cancer patients. This study will investigate the effects of a high-intensity interval endurance training (HIIT) on CRCI in breast cancer patients. Potentially underlying immunological and neurobiological mechanisms, as well as effects on patients’ self-perceived cognitive functioning and common cancer related side-effects, will be explored. Methods: A single-blinded randomized controlled trial will be carried out. The impact of HIIT on CRCI will be compared to that of a placebo-intervention (supervised myofascial release training). Both interventions will be conducted simultaneously with the patients’ first-line chemotherapy treatment typically lasting 12–18 weeks. Fifty-nine women with breast cancer will be included in each of the two groups. The study is powered to detect (α = .05, β = .2) a medium effect size difference between the two groups (d = .5) in terms of patients’ change in cognitive testing performances, from baseline until the end of the exercise-intervention. The cognitive test battery, recommended by the International Cancer and Cognition Task Force to assess CRCI, will be used as primary measure. This includes the Hopkins Verbal Learning Test (learning/verbal memory), the Controlled Oral Word Association Test (verbal fluency) and the Trail-Making-Test A/B (attention/set-switching). The following endpoints will be assessed as secondary measures: Go-/No-Go test performance (response inhibition), self-perceived cognitive functioning, serum levels of pro- and antiinflammatory markers (tumor necrosis factor alpha, Interleukin-6, Interleukin-1 alpha, Interleukin-1 beta, C-reactive protein, Interleukin-1 receptor antagonist and Interleukin-10), serum levels of neurotrophic and growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1 and vascular endothelial growth factor), as well as common cancer-related side effects (decrease in physical capacity, fatigue, anxiety and depression, sleep disturbances, quality of life and chemotherapy compliance). Discussion: This study will provide data on the question whether HIIT is an effective supportive therapy that alleviates CRCI in breast cancer patients. Moreover, the present study will help shed light on the underlying mechanisms of potential CRCI improving effects of exercise in breast cancer patients. Trial registration: DRKS.de, German Clinical Trials Register (DRKS), ID: DRKS00011390, Registered on 17 January 2018

    Protocol for the “Chemobrain in Motion – study” (CIM – study): a randomized placebo-controlled trial of the impact of a high-intensity interval endurance training on cancer related cognitive impairments in women with breast cancer receiving first-line chemotherapy

    No full text
    Abstract Background Up to 80% of breast cancer patients suffer from Cancer Related Cognitive Impairments (CRCI). Exercise is suggested as a potential supportive care option to reduce cognitive decline in cancer patients. This study will investigate the effects of a high-intensity interval endurance training (HIIT) on CRCI in breast cancer patients. Potentially underlying immunological and neurobiological mechanisms, as well as effects on patients’ self-perceived cognitive functioning and common cancer related side-effects, will be explored. Methods A single-blinded randomized controlled trial will be carried out. The impact of HIIT on CRCI will be compared to that of a placebo-intervention (supervised myofascial release training). Both interventions will be conducted simultaneously with the patients’ first-line chemotherapy treatment typically lasting 12–18 weeks. Fifty-nine women with breast cancer will be included in each of the two groups. The study is powered to detect (α = .05, β = .2) a medium effect size difference between the two groups (d = .5) in terms of patients’ change in cognitive testing performances, from baseline until the end of the exercise-intervention. The cognitive test battery, recommended by the International Cancer and Cognition Task Force to assess CRCI, will be used as primary measure. This includes the Hopkins Verbal Learning Test (learning/verbal memory), the Controlled Oral Word Association Test (verbal fluency) and the Trail-Making-Test A/B (attention/set-switching). The following endpoints will be assessed as secondary measures: Go-/No-Go test performance (response inhibition), self-perceived cognitive functioning, serum levels of pro- and antiinflammatory markers (tumor necrosis factor alpha, Interleukin-6, Interleukin-1 alpha, Interleukin-1 beta, C-reactive protein, Interleukin-1 receptor antagonist and Interleukin-10), serum levels of neurotrophic and growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1 and vascular endothelial growth factor), as well as common cancer-related side effects (decrease in physical capacity, fatigue, anxiety and depression, sleep disturbances, quality of life and chemotherapy compliance). Discussion This study will provide data on the question whether HIIT is an effective supportive therapy that alleviates CRCI in breast cancer patients. Moreover, the present study will help shed light on the underlying mechanisms of potential CRCI improving effects of exercise in breast cancer patients. Trial registration DRKS.de, German Clinical Trials Register (DRKS), ID: DRKS00011390, Registered on 17 January 2018

    Protocol for the “Chemobrain in Motion – study” (CIM – study): a randomized placebo-controlled trial of the impact of a high-intensity interval endurance training on cancer related cognitive impairments in women with breast cancer receiving first-line chemotherapy

    Get PDF
    Abstract Background Up to 80% of breast cancer patients suffer from Cancer Related Cognitive Impairments (CRCI). Exercise is suggested as a potential supportive care option to reduce cognitive decline in cancer patients. This study will investigate the effects of a high-intensity interval endurance training (HIIT) on CRCI in breast cancer patients. Potentially underlying immunological and neurobiological mechanisms, as well as effects on patients’ self-perceived cognitive functioning and common cancer related side-effects, will be explored. Methods A single-blinded randomized controlled trial will be carried out. The impact of HIIT on CRCI will be compared to that of a placebo-intervention (supervised myofascial release training). Both interventions will be conducted simultaneously with the patients’ first-line chemotherapy treatment typically lasting 12–18 weeks. Fifty-nine women with breast cancer will be included in each of the two groups. The study is powered to detect (α = .05, β = .2) a medium effect size difference between the two groups (d = .5) in terms of patients’ change in cognitive testing performances, from baseline until the end of the exercise-intervention. The cognitive test battery, recommended by the International Cancer and Cognition Task Force to assess CRCI, will be used as primary measure. This includes the Hopkins Verbal Learning Test (learning/verbal memory), the Controlled Oral Word Association Test (verbal fluency) and the Trail-Making-Test A/B (attention/set-switching). The following endpoints will be assessed as secondary measures: Go-/No-Go test performance (response inhibition), self-perceived cognitive functioning, serum levels of pro- and antiinflammatory markers (tumor necrosis factor alpha, Interleukin-6, Interleukin-1 alpha, Interleukin-1 beta, C-reactive protein, Interleukin-1 receptor antagonist and Interleukin-10), serum levels of neurotrophic and growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1 and vascular endothelial growth factor), as well as common cancer-related side effects (decrease in physical capacity, fatigue, anxiety and depression, sleep disturbances, quality of life and chemotherapy compliance). Discussion This study will provide data on the question whether HIIT is an effective supportive therapy that alleviates CRCI in breast cancer patients. Moreover, the present study will help shed light on the underlying mechanisms of potential CRCI improving effects of exercise in breast cancer patients. Trial registration DRKS.de, German Clinical Trials Register (DRKS), ID: DRKS00011390, Registered on 17 January 2018

    Influence of Personalized Exercise Recommendations During Rehabilitation on the Sustainability of Objectively Measured Physical Activity Levels, Fatigue, and Fatigue-Related Biomarkers in Patients With Breast Cancer

    No full text
    Purpose. Only one-third of patients with breast cancer reach the recommended activity level of 15 to 25 MET h/wk. The aim of this study was to determine the influence of personalized exercise recommendations during rehabilitation on patients' physical activity level, fatigue, and self-perceived cognitive function as well as on side effect-associated biomarkers. Methods. Total metabolic rate, physical activity level, mean MET and steps, fatigue, self-perceived cognitive functioning , and biomarkers (C-reactive protein [CRP], interleukin 6, macrophage migration inhibiting factor [MIF], tumor necrosis factor [TNF]-, brain-derived neurotrophic factor [BDNF], insulin-like growth factor 1 [IGF1]) were assessed in 60 patients with breast cancer in the aftercare phase before (t(0)) and 8 months after (t(1)) the intervention. The rehabilitation program consisted of an initial 3-week period and a 1-week stay after 4 months. Results. Paired t-test indicated a statistically significant increase in all activity outcomes from t(0) to t(1). Patients' mean activity level significantly increased from 14.89 to 17.88 MET h/wk. Fatigue and self-perceived cognitive functioning significantly improved from t(0) to t(1). CRP levels significantly decreased, and BDNF as well as IGF1 levels significantly increased over time. Correlation analysis revealed statistically significant negative associations between fatigue, physical activity, and markers of inflammation (TNF- and MIF). Furthermore, significant positive correlations between subjective cognitive functioning and all dimensions of fatigue were observed. Conclusions. The results support the importance of personalized exercise recommendations to increase physical activity levels in patients with breast cancer. Furthermore, the results highlighti an association between physical activity, fatigue, and inflammation
    corecore