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Abstract. This paper is focused in the analysis of cable stays for Viaducto Zaragoza Bridge 
located in the city of Puebla, Mexico. Computational fluid dynamics based on finite element 
method is used to simulate wind forces acting on the cable stays, which are coupled to a 
structural model of each model analyzed for two wind velocities, associated with 
serviceability limit state (50 km/hr or 14 m/s) and maximum wind velocity (140 km/hr or 14 
m/s). Thus, a stabilized fluid flow formulation is presented to solve an ALE fluid flow while a 
geometrically non–linear solid elements are used to model the cable stays. Both solutions are 
coupled using a strong coupling technique to perform an aeroelastic analysis of the cable 
stays. The results suggest that transversal vibration to wind action can generate undesirable 
vibrations conditions as the resonance phenomenon in cable stays. 

1 INTRODUCTION 
Cable–stayed bridges are a highly nonlinear structural system where superstructure deck is 

supported on several points of its length by cables anchored directly to a support column. 
Nowadays different cable geometries are commonly used to transmit loads between deck and 
the pylon (or support column). The most typical cable geometries are shown in Figure 1. 

The concept of cable–stayed bridges can be traced to the XVII century [1], the economic 
viability of this kind of bridges had to wait the development of two aspects: (a) Decks 
constructed of steel and concrete, and (b) High resistance steel cables. 

While the materials used in structural components of these structures are under linear–
elastic behaviour for normal operation conditions, the overall performance of the entire 
structure is often highly nonlinear due to: (i) Nonlinear behaviour of cable stays for axial 
load–strain relationship caused by its self–weight; (ii) Nonlinear relationship for elements 
under axial load – bending; and (iii) Large displacements in the structure even for normal 
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operation loads.  
 

 
Figure 1 Typical geometries for cable–stayed bridges 

1.1 General Bridge Description 
The geometry employed in the Viaducto Zaragoza Bridge requires a system of inclined and 

horizontal cables to support the superstructure deck to the inclined pylon or mast as can be 
shown in Figure 2. Table 1 shows normal operating conditions for each cable stay of the 
bridge 

 

 
Figure 2 Elevation view of Viaducto Zaragoza Bridge and designation of cable-stays 

Wind actions are estimated according local code requirements specified in [2]. According 
the characteristics of the project, cable stays analyses must be performed for two wind 
velocities: 

1) An average wind velocity ( medV = 14 m/s) representing the average operating conditions 
of the bridge 

2) Maximum probable wind velocity ( maxV   40 m/s) representing the maximum wind 
speed expected for the operations of the bridge. 

 
 

459



Alejandro Hernández and Jesús G. Valdés 

 3 
 

Table 1 Cable stays characteristics for normal operation conditions 

Designation Length Strands Weight Tensioning Force 
(m) (kN) (MN) 

T01N 17.732 28 12.66 784.5 
T01S 17.639 28 12.59 784.5 
T02N 23.440 48 28.68 431.5 
T02S 23.205 48 28.40 451.1 
T03N 32.331 48 39.57 725.6 
T03S 31.934 48 39.08 745.3 
T04N 42.518 48 52.03 1078.7 
T04S 41.854 48 51.22 1304.2 
T05N 53.072 34 46.01 1588.6 
T05S 52.214 34 45.26 1588.6 
H01 39.049 39 77.65 1314.0 
H02 45.362 39 90.21 990.4 
H03 51.145 39 101.71 2510.3 

2 FINITE ELEMENT ANALYSIS OF THE WIND ACTION 
An incompressible fluid formulation has been used to simulate wind action due to fluid 

velocity is lower than 0.3 Mach. Navier–Stokes equation are used to model flow as shown in 
Eq. (1). 
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where: 
 v = Velocity 
 p  = Pressure field 
 v  = Acceleration 
 M  = Mass matrix 
 K  = Matrix with convective and viscous terms 
 G  = Matrix to include pressure terms or to consider a compressible flow 
For dynamic fluid flow analysis Eq. (1) is rewritten by Gunzburger [3] as shows in Eq. (2). 

To perform a faster calculation, Eq. (2) is decoupled using fractional step method proposed by 
Codina [4] and considering the equation as complete Eulerian formulation, expression is 
transformed using and ALE formulation, as can be found in Belytschko et al. [5] to take in 
count the structure movement in the domain of analysis. 
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Decoupled and stabilized equations are expressed as can be shown in Eq.(3), which are 

formulated in four implicit steps for each time increment. The first step is to solve the system 
at an intermediate velocity, which is a nonlinear formulation. The final pressure is computed 
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in the second step. In the third step the final velocity is calculated and the complete system is 
stabilized in the fourth step. 
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Figure 3 shows a mesh used to model wind for the analysis of cable H01. Figure 3(b) 

shows that finite elements near to the contour are smaller to model the boundary layer. 
 

 
 

(a) General View (b) Finite Elements detail 

Figure 3 Isometric view of mesh to model wind 

3 FINITE ELEMENT ANALYSIS OF THE CABLE STAYS 
To estimate the behavior of the cable stays a geometrically nonlinear model of solid is 

used. The properties of solids for each cable stay is estimated from the real properties showed 
in Table 1, considering the accessories elements for strands protection (as shown if Figure 4) 
only provide mass, thus, the cable stays are modeled with solids with the same equivalent 
properties to all elements. 

The expression that describes the behavior of cable stays are obtained from the equation of 
lineal momentum, and discretized using FEM. The computations consist of solve the 
following expression 

 
    int ext

1 1 1n n n   f u Mu f u  (4) 
where: 
 intf = Internal forces 

Wind Action 

Wind Action 
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 extf = External forces 
 M  = Mass matrix 
 u  = Displacements 
 u  = Accelerations 

 
Figure 4 Transversal detail of cable stays 

To solve the dynamics of cable stays in time Generalized– method is used to integrate 
Eq. (4) due to other traditional methods like  –Newmark or  –Wilson produce inconsistent 
results with nonlinear finite element formulation proposed. 

One important issue of this work is the modeling of the cable stays tension for the 
elements. Considering that the spatial position and tension force for each cable stay are 
known, the one–dimensional stress is transformed in a tensional stress in a 3D solid according 
to the reference system used for analysis. Thereafter, internal forces due to tension stress are 
added to the ordinary 3D stress tensor. 

Furthermore, to reduce the memory required to solve the equation system, meshes for each 
cable stay is always horizontal or vertical to coincide with the global reference system. This 
consideration helps to the development of mesh analysis but leads the problem of cable self–
weight. To solve this problem gravity is considered as a unit vector that can be oriented in any 
direction making the cables have the correct deformation profile according its real position in 
the bridge. 

4 WIND–CABLE STAY INTERACTION ANALYSIS 
The cable stay and the fluid are solved in a domain containing both models, as can be 

shown in Figure 3, solving both problems in a coupled way, as occur in real world. 
To solve both systems, a partitioned approach is employed, i.e., for each time step behavior 

of cable stay and fluid are computed independently using Aitken schemes (Wüncher, [6]) to 
ensure convergence of both coupled systems. This methodology has been employed by 
Valdés [7] given excellent results for aeroelastic problems of several structures, such as those 
studied by Valdés et al. [8] and Hernández and Valdés [9]. 

The procedure for the solution of wind–cable stay interaction is as follows: 
1. Solve the cable stay to predict the displacements according the acting external 

forces. Initial step consider tension force and gravity only. 
2. Obtained displacements of cable–stays are passed to the fluid mesh, adjusting the 

mesh to match with deformed profile of the cable. 
3. Wind dynamics is solved to estimate acting forces on cable–stay surface. 
4. Updating fluid forces acting on cable–stay surface. 

This procedure is repeated until convergence criteria is reached for each time step. Detailed 
information for above procedure can be found in [7]. 
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5 OBTAINED RESULTS 
Figure 5 shows pressure distribution for certain time step al half-length of cable stay T03N. 

Both figures shown suction due to vortices generation that induces transversal vibration on 
cable stays respect to wind action. 

 
(a) Average velocity (14 m/s) (b) Maximum velocity (40 m/s) 

  
Figure 5 Transversal views for pressure distribution at half length of cable stay T03N 

Vortices are not statically and “move” through the cable length, as can be seen in Figure 6 
which shows pressure distribution in a cross section along the entire length of cable stay 
T03N for both analysis conditions. 

 
(a) Average velocity (14 m/s) (b) Maximum velocity (40 m/s) 

  
Figure 6 Longitudinal views of pressure distribution for cable stay T03N 

Wind action Wind action 
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Variation of the acting forces on the cable length in conjunction with operational 
conditions for each case cause the vibration of cable stay with certain profile deformation and 
vibrational frequency. 

As can be noted in Figure 7 the displacements in transversal direction to wind action 
dominate the total displacement at this position, making evident that the cable has a typical 
resonant behavior. Furthermore, the displacements shown in Figure 8 suggest that transverse 
displacements do not dominate the total displacements, however, is evident that transversal 
displacements increases with time, but their influence on the total displacements is minimal. It 
is noteworthy that in the presented case, there is a greater potential that resonance phenomena 
occurs at wind velocity less than the maximum analyzed, which is more probably to occur in 
bridge life. 

 
Figure 7 Displacements history at half length of T03N cable for average velocity (14 m/s) 

Obtained results suggest that the most critical conditions for cable stays are transversal 
vibration respect to wind action, and is not necessary have a high wind speeds to induce 
resonance in cable stays, which may lead in fatigue on the strands or their anchorage systems. 

6 CONCLUSIONS 
To determinate displacements and forces acting on a cable–stayed bridge, traditional 

analysis methods are not recommended to use due to highly geometrically nonlinear behavior 
of this kind of structures. In order to improve the functionality and security for cases like 
above mentioned, techniques that can predict the behavior more accurately are needed. The 
presented FEM application permits to visualize vibrations characteristics for cable stays and 
determinate if they are susceptible to undesirable frequencies, as those associated with 
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resonance phenomena. 

 
Figure 8 Displacements history at half length of T03N cable for maximum wind velocity (40 m/s) 

Obtained results suggest that transversal vibration respect to wind action is very important 
to determinate safety operation condition of the cable stays, currently most of methodologies 
which allow the determination vibration periods only can predict frequencies in the direction 
of wind action, due to the models are considered in 2D (Au et al. [10], Starossek [11] among 
others) making impossible to determinate the vibrations characteristics in transverse direction 
to wind action. 

For presented case of Viaducto Zaragoza Bridge, resonance phenomena is identified for 
some cable stays, viewing the need to change their operations conditions by adding frictional 
dampers at deck anchorages. These devices modify the natural vibration frequencies of the 
cables due to added mas of the device, and reduce the displacements by the damper, 
decreasing the probability of occurrence of resonance. 
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