54 research outputs found

    Biochemistry of the erythrocyte Rh polypeptides: a review.

    Get PDF
    The clinically important Rh blood group system is complex, consisting of multiple distinct antigens. Despite clinical recognition for over 50 years, the Rh blood group antigens have remained poorly understood on a molecular level until the recent identification and characterization of the "Rh polypeptides," the core structural proteins of the Rh antigens. This group of erythrocyte membrane proteins of molecular weight 30,000-35,000 daltons was first recognized by employing Rh-specific antibodies to immunoprecipitate radiolabeled components of erythrocyte membranes. By using antibodies specific for the Rh D, c, and E antigens, a series of highly related non-identical proteins were immunoprecipitated, indicating that the Rh antigens are composed of multiple related proteins. The Rh polypeptides have been purified and characterized, and they were found to have several unusual biochemical characteristics. The Rh polypeptides penetrate the membrane bilayer; they are linked to the underlying membrane skeleton; they are covalently fatty acid acylated with palmitate. While the Rh antigenic reactivity is unique to human erythrocytes, the Rh polypeptides have been isolated from erythrocytes of diverse species and are thought to be fundamental components of all mammalian erythrocyte membranes. The functional role of the Rh polypeptides remains undefined, but a role in the organization of membrane phospholipid is suspected

    Mammalian red cell membrane Rh polypeptides are selectively palmitoylated subunits of a macromolecular complex

    Get PDF
    Incubation of [3H]palmitic acid, ATP, and CoA with inside-out membrane vesicles prepared from human or other mammalian red cells resulted in nearly exclusive 3H-palmitoylation of the Mr = 32,000 Rh polypeptides. [3H]Palmitic, [3H]myristic, and [3H]oleic acids were comparably esterified onto Rh polypeptides in inside-out membrane vesicles in the presence of ATP and CoA, although [3H]palmitic acid was preferentially incorporated by intact human red cells. Experiments using sulfhydryl reagents or tryptic digestions suggested that multiple sulfhydryl groups on the Rh polypeptides located near the cytoplasmic leaflet of the lipid bilayer were 3H-palmitoylated; the exofacial sulfhydryl group essential for Rh antigenic reactivity was not 3H-palmitoylated. Transfer of fatty acid from [14C]palmitoyl-CoA to sites on the Rh polypeptides occurred even after previous incubation of inside-out membrane vesicles at 95 degrees C or after solubilization of inside-out membrane vesicles in Triton X-100. Hydrodynamic analyses of Triton X-100-solubilized membranes surprisingly demonstrated that 3H-palmitoylated Rh polypeptides behaved as a protein of apparent Mr = 170,000. These in vitro studies suggest that palmitoylation of Rh polypeptides occurs within a macromolecular complex by a highly selective but possibly nonenzymatic mechanism

    Biochemistry of the erythrocyte Rh polypeptides: a review

    Get PDF
    The clinically important Rh blood group system is complex, consisting of multiple distinct antigens. Despite clinical recognition for over 50 years, the Rh blood group antigens have remained poorly understood on a molecular level until the recent identification and characterization of the "Rh polypeptides," the core structural proteins of the Rh antigens. This group of erythrocyte membrane proteins of molecular weight 30,000-35,000 daltons was first recognized by employing Rh-specific antibodies to immunoprecipitate radiolabeled components of erythrocyte membranes. By using antibodies specific for the Rh D, c, and E antigens, a series of highly related non-identical proteins were immunoprecipitated, indicating that the Rh antigens are composed of multiple related proteins. The Rh polypeptides have been purified and characterized, and they were found to have several unusual biochemical characteristics. The Rh polypeptides penetrate the membrane bilayer; they are linked to the underlying membrane skeleton; they are covalently fatty acid acylated with palmitate. While the Rh antigenic reactivity is unique to human erythrocytes, the Rh polypeptides have been isolated from erythrocytes of diverse species and are thought to be fundamental components of all mammalian erythrocyte membranes. The functional role of the Rh polypeptides remains undefined, but a role in the organization of membrane phospholipid is suspected

    Predicting protein-protein binding sites in membrane proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many integral membrane proteins, like their non-membrane counterparts, form either transient or permanent multi-subunit complexes in order to carry out their biochemical function. Computational methods that provide structural details of these interactions are needed since, despite their importance, relatively few structures of membrane protein complexes are available.</p> <p>Results</p> <p>We present a method for predicting which residues are in protein-protein binding sites within the transmembrane regions of membrane proteins. The method uses a Random Forest classifier trained on residue type distributions and evolutionary conservation for individual surface residues, followed by spatial averaging of the residue scores. The prediction accuracy achieved for membrane proteins is comparable to that for non-membrane proteins. Also, like previous results for non-membrane proteins, the accuracy is significantly higher for residues distant from the binding site boundary. Furthermore, a predictor trained on non-membrane proteins was found to yield poor accuracy on membrane proteins, as expected from the different distribution of surface residue types between the two classes of proteins. Thus, although the same procedure can be used to predict binding sites in membrane and non-membrane proteins, separate predictors trained on each class of proteins are required. Finally, the contribution of each residue property to the overall prediction accuracy is analyzed and prediction examples are discussed.</p> <p>Conclusion</p> <p>Given a membrane protein structure and a multiple alignment of related sequences, the presented method gives a prioritized list of which surface residues participate in intramembrane protein-protein interactions. The method has potential applications in guiding the experimental verification of membrane protein interactions, structure-based drug discovery, and also in constraining the search space for computational methods, such as protein docking or threading, that predict membrane protein complex structures.</p

    Mammalian red cell membrane Rh polypeptides are selectively palmitoylated subunits of a macromolecular complex

    No full text
    Incubation of [3H]palmitic acid, ATP, and CoA with inside-out membrane vesicles prepared from human or other mammalian red cells resulted in nearly exclusive 3H-palmitoylation of the Mr = 32,000 Rh polypeptides. [3H]Palmitic, [3H]myristic, and [3H]oleic acids were comparably esterified onto Rh polypeptides in inside-out membrane vesicles in the presence of ATP and CoA, although [3H]palmitic acid was preferentially incorporated by intact human red cells. Experiments using sulfhydryl reagents or tryptic digestions suggested that multiple sulfhydryl groups on the Rh polypeptides located near the cytoplasmic leaflet of the lipid bilayer were 3H-palmitoylated; the exofacial sulfhydryl group essential for Rh antigenic reactivity was not 3H-palmitoylated. Transfer of fatty acid from [14C]palmitoyl-CoA to sites on the Rh polypeptides occurred even after previous incubation of inside-out membrane vesicles at 95 degrees C or after solubilization of inside-out membrane vesicles in Triton X-100. Hydrodynamic analyses of Triton X-100-solubilized membranes surprisingly demonstrated that 3H-palmitoylated Rh polypeptides behaved as a protein of apparent Mr = 170,000. These in vitro studies suggest that palmitoylation of Rh polypeptides occurs within a macromolecular complex by a highly selective but possibly nonenzymatic mechanism

    Biochemistry of the erythrocyte Rh polypeptides: a review

    No full text
    The clinically important Rh blood group system is complex, consisting of multiple distinct antigens. Despite clinical recognition for over 50 years, the Rh blood group antigens have remained poorly understood on a molecular level until the recent identification and characterization of the "Rh polypeptides," the core structural proteins of the Rh antigens. This group of erythrocyte membrane proteins of molecular weight 30,000-35,000 daltons was first recognized by employing Rh-specific antibodies to immunoprecipitate radiolabeled components of erythrocyte membranes. By using antibodies specific for the Rh D, c, and E antigens, a series of highly related non-identical proteins were immunoprecipitated, indicating that the Rh antigens are composed of multiple related proteins. The Rh polypeptides have been purified and characterized, and they were found to have several unusual biochemical characteristics. The Rh polypeptides penetrate the membrane bilayer; they are linked to the underlying membrane skeleton; they are covalently fatty acid acylated with palmitate. While the Rh antigenic reactivity is unique to human erythrocytes, the Rh polypeptides have been isolated from erythrocytes of diverse species and are thought to be fundamental components of all mammalian erythrocyte membranes. The functional role of the Rh polypeptides remains undefined, but a role in the organization of membrane phospholipid is suspected
    • …
    corecore