804 research outputs found
Recommended from our members
Direct evidence that pyrimidine dimers in DNA result in neoplastic transformation
Recommended from our members
Direct evidence that damaged DNA results in neoplastic transformation: a fish story
The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc
Hyaluronan, a macromolecular glycosaminoglycan, is normally synthesized by hyaluronan synthases at the plasma membrane using cytosolic UDP-GlcUA and UDP-GlcNAc substrates and extruding the elongating chain into the extracellular space. The cellular metabolism (synthesis and catabolism) of hyaluronan is dynamic. UDP-GlcNAc is also the substrate for O-GlcNAc transferase, which is central to the control of many cytosolic pathways. This Perspective outlines recent data for regulation of hyaluronan synthesis and catabolism that support a model that hyaluronan metabolism can be a rheostat for controlling an acceptable normal range of cytosolic UDP-GlcNAc concentrations in order to maintain normal cell functions
Gender violence in schools: taking the ‘girls-as-victims’ discourse forward
This paper draws attention to the gendered nature of violence in schools. Recent recognition that schools can be violent places has tended to ignore the fact that many such acts originate in unequal and antagonistic gender relations, which are tolerated and ‘normalised’ by everyday school structures and processes. After examining some key concepts and definitions, we provide a brief overview of the scope and various manifestations of gender violence in schools, noting that most research to date has focused on girls as victims of gender violence within a heterosexual context and ignores other forms such as homophobic and girl violence. We then move on to look at a few interventions designed to address gender violence in schools in the developing world and end by highlighting the need for more research and improved understanding of the problem and how it can be addressed
Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24
Supergranulation is a component of solar convection that manifests itself on
the photosphere as a cellular network of around 35 Mm across, with a turnover
lifetime of 1-2 days. It is strongly linked to the structure of the magnetic
field. The horizontal, divergent flows within supergranule cells carry local
field lines to the cell boundaries, while the rotational properties of
supergranule upflows may contribute to the restoration of the poloidal field as
part of the dynamo mechanism that controls the solar cycle. The solar minimum
at the transition from cycle 23 to 24 was notable for its low level of activity
and its extended length. It is of interest to study whether the convective
phenomena that influences the solar magnetic field during this time differed in
character to periods of previous minima. This study investigates three
characteristics (velocity components, sizes and lifetimes) of solar
supergranulation. Comparisons of these characteristics are made between the
minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008,
respectively. It is found that whereas the lifetimes are equal during both
epochs (around 18 h), the sizes are larger in 1996 (35.9 +/- 0.3 Mm) than in
2008 (35.0 +/- 0.3 Mm), while the dominant horizontal velocity flows are weaker
(139 +/- 1 m/s in 1996; 141 +/- 1 m/s in 2008). Although numerical differences
are seen, they are not conclusive proof of the most recent minimum being
inherently unusual.Comment: 22 pages, 5 figures. Solar Physics, in pres
Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms
Experimental and numerical investigation of single-beam and pump-probe
interaction with a resonantly absorbing dense extended medium under strong and
weak field-matter coupling is presented. Significant probe beam amplification
and conical emission were observed. Under relatively weak pumping and high
medium density, when the condition of strong coupling between field and
resonant matter is fulfilled, the probe amplification spectrum has a form of
spectral doublet. Stronger pumping leads to the appearance of a single peak of
the probe beam amplification at the transition frequency. The greater probe
intensity results in an asymmetrical transmission spectrum with amplification
at the blue wing of the absorption line and attenuation at the red one. Under
high medium density, a broad band of amplification appears. Theoretical model
is based on the solution of the Maxwell-Bloch equations for a two-level system.
Different types of probe transmission spectra obtained are attributed to
complex dynamics of a coherent medium response to broadband polychromatic
radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in
Phys. Rev.
Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum
A qualitative mechanism for the emergence of domain structured background
gluon fields due to singularities in gauge field configurations is considered,
and a model displaying a type of mean field approximation to the QCD partition
function based on this mechanism is formulated. Estimation of the vacuum
parameters (gluon condensate, topological susceptibility, string constant and
quark condensate) indicates that domain-like structures lead to an area law for
the Wilson loop, nonzero topological susceptibility and spontaneous breakdown
of chiral symmetry. Gluon and ghost propagators in the presence of domains are
calculated explicitly and their analytical properties are discussed. The
Fourier transforms of the propagators are entire functions and thus describe
confined dynamical fields.Comment: RevTeX, 48 pages (32 pages + Appendices A-E), new references added
[1,2,4,5] and minor formulae corrected for typographical error
Panspermia, Past and Present: Astrophysical and Biophysical Conditions for the Dissemination of Life in Space
Astronomically, there are viable mechanisms for distributing organic material
throughout the Milky Way. Biologically, the destructive effects of ultraviolet
light and cosmic rays means that the majority of organisms arrive broken and
dead on a new world. The likelihood of conventional forms of panspermia must
therefore be considered low. However, the information content of dam-aged
biological molecules might serve to seed new life (necropanspermia).Comment: Accepted for publication in Space Science Review
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
- …