724 research outputs found

    VELOS : a VR platform for ship-evacuation analysis

    Get PDF
    Virtual Environment for Life On Ships (VELOS) is a multi-user Virtual Reality (VR) system that aims to support designers to assess (early in the design process) passenger and crew activities on a ship for both normal and hectic conditions of operations and to improve ship design accordingly. This article focuses on presenting the novel features of VELOS related to both its VR and evacuation-specific functionalities. These features include: (i) capability of multiple users’ immersion and active participation in the evacuation process, (ii) real-time interactivity and capability for making on-the-fly alterations of environment events and crowd-behavior parameters, (iii) capability of agents and avatars to move continuously on decks, (iv) integrated framework for both the simplified and advanced method of analysis according to the IMO/MSC 1033 Circular, (v) enrichment of the ship geometrical model with a topological model suitable for evacuation analysis, (vi) efficient interfaces for the dynamic specification and handling of the required heterogeneous input data, and (vii) post-processing of the calculated agent trajectories for extracting useful information for the evacuation process. VELOS evacuation functionality is illustrated using three evacuation test cases for a ro–ro passenger ship

    Initial experience of an investigational 3T MR scanner designed for use on neonatal wards

    Get PDF
    OBJECTIVES: MR imaging of neonates is difficult for many reasons and a major factor is safe transport to the MR facilities. In this article we describe the use of a small, investigational 3-T MR customised for brain imaging and sited on a neonatal unit of a tertiary centre in the UK, which is in contrast to a 300-m journey to the whole-body MR scanner used at present for clinical cases. METHODS: We describe our methods for preparing babies for safe transport and scanning on an investigational 3-T MR scanner on a neonatal unit and the development of appropriate MR sequences. The MR scanner does not have CE marking at present so this early development work was undertaken on normal neonates whose parents consented to a research examination. RESULTS: Fifty-two babies were scanned and there were no serious adverse events. The MR examinations were considered to be diagnostically evaluable in all 52 cases and in 90% the imaging was considered to be at least as good as the quality obtained on the 1.5-T scanner currently used for clinical cases. CONCLUSION: We have shown that this investigational 3-T MR scanner can be used safely on a neonatal unit and we have refined the MR sequences to a point that they are clinically usable. KEY POINTS: ‱ Access to neonatal MR imaging is limited. ‱ We describe an investigational 3-T MR scanner site on a neonatal unit. ‱ The scanner produces images suitable for clinical practice

    Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes

    Full text link
    Chlamydia trachomatis is an obligate intracellular bacterium with a biphasic life cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial inclusion is non-fusogenic with endosomal or lysosomal compartments but intersects a pathway involved in transport of sphingomyelin from the Golgi apparatus to the plasma membrane. The physical conditions within the mature chlamydial inclusion are unknown. We used ratiometric imaging with membrane-permeant, ion-selective fluorescent dyes for microanalyis of the physical environment within the inclusion. Determination of H + , Na + , K + and Ca 2 + concentrations using CFDA (carboxy fluorescein diacetate) or BCECF-AM (2 â€Č ,7 â€Č -bis (2-carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester, SBFI-AM, PBFI-AM and fura-PE3-acetomethoxyester (Fura-PE3-AM), respectively, indicated that all ions assayed within the lumenal space of the inclusion approximated the concentrations within the cytoplasm. Stimulation of purinergic receptors by addition of extracellular ATP triggered a dynamic Ca 2 + response that occurred simultaneously within the cytoplasm and interior of the inclusion. The chlamydial inclusion thus appears to be freely permeable to cytoplasmic ions. These results have implications for nutrient acquisition by chlamydiae and may contribute to the non-fusogenicity of the inclusion with endocytic compartments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72253/1/j.1462-5822.2002.00191.x.pd

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with EÎœ<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for ΜΌ→Μe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.

    MRI in the diagnosis of fetal developmental brain abnormalities : the MERIDIAN diagnostic accuracy study

    Get PDF
    Background: Ultrasonography has been the mainstay of antenatal screening programmes in the UK for many years. Technical factors and physical limitations may result in suboptimal images that can lead to incorrect diagnoses and inaccurate counselling and prognostic information being given to parents. Previous studies suggest that the addition of in utero magnetic resonance imaging (iuMRI) may improve diagnostic accuracy for fetal brain abnormalities. These studies have limitations, including a lack of an outcome reference diagnosis (ORD), which means that improvements could not be assessed accurately. Objectives: To assess the diagnostic impact, acceptability and cost consequence of iuMRI among fetuses with a suspected fetal brain abnormality. Design: A pragmatic, prospective, multicentre, cohort study with a health economics analysis and a sociological substudy. Setting: Sixteen UK fetal medicine centres. Participants: Pregnant women aged ≄ 16 years carrying a fetus (at least 18 weeks’ gestation) with a suspected brain abnormality detected on ultrasonography. Interventions: Participants underwent iuMRI and the findings were reported to their referring fetal medicine clinician. Main outcome measures: Pregnancy outcome was followed up and an ORD from postnatal imaging or postmortem autopsy/imaging collected when available. Developmental data from the Bayley Scales of Infant Development and questionnaires were collected from the surviving infants aged 2–3 years. Data on the management of the pregnancy before and after the iuMRI were collected to inform the economic evaluation. Two surveys collected data on patient acceptability of iuMRI and qualitative interviews with participants and health professionals were undertaken. Results: The primary analysis consisted of 570 fetuses. The absolute diagnostic accuracies of ultrasonography and iuMRI were 68% and 93%, respectively [a difference of 25%, 95% confidence interval (CI) 21% to 29%]. The difference between ultrasonography and iuMRI increased with gestational age. In the 18–23 weeks group, the figures were 70% for ultrasonography and 92% for iuMRI (difference of 23%, 95% CI 18% to 27%); in the ≄ 24 weeks group, the figures were 65% for ultrasonography and 94% for iuMRI (difference of 29%, 95% CI 23% to 36%). Patient acceptability was high, with at least 95% of respondents stating that they would have iuMRI again in a similar situation. Health professional interviews suggested that iuMRI was acceptable to clinicians and that iuMRI was useful as an adjunct to ultrasonography, but not as a replacement. Across a range of scenarios, iuMRI resulted in additional costs compared with ultrasonography alone. The additional cost was consistently < ÂŁ600 per patient and the cost per management decision appropriately changed was always < ÂŁ3000. There is potential for reporting bias from the referring clinicians on the diagnostic and prognostic outcomes. Lower than anticipated follow-up rates at 3 years of age were observed. Conclusions: iuMRI as an adjunct to ultrasonography significantly improves the diagnostic accuracy and confidence for the detection of fetal brain abnormalities. An evaluation of the use of iuMRI for cases of isolated microcephaly and the diagnosis of fetal spine abnormalities is recommended. Longer-term follow-up studies of children diagnosed with fetal brain abnormalities are required to fully assess the functional significance of the diagnoses. Trial registration: Current Controlled Trials ISRCTN27626961

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore