7 research outputs found

    Anatomical variations of sinonasal region: a CT scan study

    Get PDF
    Multislice CT is currently the imaging modality of choice for evaluating PNS & adjacent structures. Such a method has been increasingly utilized in the assessment of anatomical variations, allowing their accurate identification with high anatomical details. Some anatomical variations may predispose to sinonasal disease, constituting areas of high risk for injuries & complications during surgical procedures. Therefore, the recognition of such variations is critical in the preoperative evaluation for endoscopic surgery

    Diagnostic Utility of Cerebral White Matter Integrity in Early Alzheimer\u27s Disease

    Get PDF
    We compared white matter integrity with brain atrophy in healthy controls and participants with very mild dementia (Clinical Dementia Rating 0 vs. 0.5) from the Brain Aging Project, a longitudinal study of aging and memory at the University of Kansas Medical Center. Structural magnetic resonance imaging and diffusion tensor imaging (DTI) including fractional anisotropy and mean diffusivity were performed on 27 patients with very mild dementia (Clinical Dementia Rating = 0.5) of the Alzheimer\u27s type (DAT), and 32 cognitively normal subjects. Patient groups were compared across 6 volumetric measures and 14 DTI regions of interest. Very mildly demented patients showed expected disease-related patterns of brain atrophy with reductions in whole-brain and hippocampal volumes most prominent. DTI indices of white matter integrity were mixed. Right parahippocampus showed significant but small disease-related reductions in fractional anisotropy. Right parahippocampus and left internal capsule showed greater mean diffusivity in early DAT compared with controls. A series of discriminant analyses demonstrated that gray matter atrophy was a significantly better predictor of dementia status than were DTI indices. Brain atrophy was most strongly related to very mild DAT. Modest disease-related white matter anomalies were present in temporal cortex, and deep white matter had limited discriminatory diagnostic power, probably because of the very mild stage of disease in these participants

    Diagnostic Utility of Cerebral White Matter Integrity in Early Alzheimer's Disease

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Neuroscience on August 2010, available online: http://www.tandfonline.com/10.3109/00207454.2010.494788.We compared white matter integrity with brain atrophy in healthy controls and participants with very mild dementia (Clinical Dementia Rating 0 vs. 0.5) from the Brain Aging Project, a longitudinal study of aging and memory at the University of Kansas Medical Center. Structural magnetic resonance imaging and diffusion tensor imaging (DTI) including fractional anisotropy and mean diffusivity were performed on 27 patients with very mild dementia (Clinical Dementia Rating = 0.5) of the Alzheimer's type (DAT), and 32 cognitively normal subjects. Patient groups were compared across 6 volumetric measures and 14 DTI regions of interest. Very mildly demented patients showed expected disease-related patterns of brain atrophy with reductions in whole-brain and hippocampal volumes most prominent. DTI indices of white matter integrity were mixed. Right parahippocampus showed significant but small disease-related reductions in fractional anisotropy. Right parahippocampus and left internal capsule showed greater mean diffusivity in early DAT compared with controls. A series of discriminant analyses demonstrated that gray matter atrophy was a significantly better predictor of dementia status than were DTI indices. Brain atrophy was most strongly related to very mild DAT. Modest disease-related white matter anomalies were present in temporal cortex, and deep white matter had limited discriminatory diagnostic power, probably because of the very mild stage of disease in these participants

    Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer's Disease

    Get PDF
    This is not the final published version.Exercise and cardiorespiratory (CR) fitness may moderate age-related regional brain changes in nondemented older adults (ND). The relationship of fitness to Alzheimer's disease (AD) related brain change is understudied, particularly in the hippocampus which is disproportionately affected in early AD. The role of apolipoprotein E4 (apoE4) genotype in modulating this relationship is also unknown. Nondemented (n=56) and early-stage AD subjects (n=61) over age 65 had MRI and CR fitness assessments. Voxel-based morphometry (VBM) techniques were utilized to identify AD-related atrophy. We analyzed the relationship of CR fitness with white and gray matter within groups, assessed fitness-related brain volume change in areas most affected by AD-related atrophy, and then analyzed differential fitness-brain relationships between apoE4 carriers. Atrophy was present in the medial temporal, temporal, and parietal cortices in subjects with mild AD. There was a significant positive correlation of CR fitness with parietal and medial temporal volume in AD subjects. ND subjects did not have a significant relationship between brain volume and CR fitness in the global or SVC analyses. There was not a significant interaction for fitness × apoE4 genotype in either group. In early-stage AD, cardiorespiratory fitness is associated with regional brain volumes in the medial temporal and parietal cortices suggesting that maintaining cardiorespiratory fitness may modify AD-related brain atrophy
    corecore