13 research outputs found

    Mitigating the impacts of air pollutants in Nepal and climate co-benefits: a scenario-based approach

    Get PDF
    Short-lived climate pollutants (SLCPs) including black carbon (BC), methane (CH4), and tropospheric ozone (O3) are major climate forcers after carbon dioxide (CO2). These SLCPs also have detrimental impacts on human health and agriculture. Studies show that the Hindu Kush Himalayan (HKH) region, which includes Nepal, has been experiencing the impacts of these pollutants in addition to greenhouse gases. In this study, we derive a national-level emission inventory for SLCPs, CO2, and air pollutants for Nepal and project their impacts under reference (REF) and mitigation policy (POL) scenarios. The impacts on human health, agriculture, and climate were then estimated by applying the following: (1) adjoint coefficients from the Goddard Earth Observing System (GEOS)-chemical transport model that quantify the sensitivity of fine particulate matter (PM2.5) and surface O3 concentrations in Nepal, and radiative forcing in four latitudinal bands, to emissions in 2 × 2.5° grids, and (2) concentration–response functions to estimate health and crop loss impacts in Nepal. With the mitigating measures undertaken, emission reductions of about 78% each of BC and CH4 and 87% of PM2.5 could be achieved in 2050 compared with the REF scenario. This would lead to an estimated avoidance of 29,000 lives lost and 1.7 million tonnes of crop loss while bringing an economic benefit in present value of 2.7 times more than the total cost incurred in its implementation during the whole period 2010–2050. The results provide useful policy insights and pathways for evidence-based decision-making in the design and effective implementation of SLCP mitigation measures in Nepal

    Estimating on-road vehicle fuel economy in Africa : A case study based on an urban transport survey in Nairobi, Kenya

    Get PDF
    In African cities like Nairobi, policies to improve vehicle fuel economy help to reduce greenhouse gas emissions and improve air quality, but lack of data is amajor challenge. We present a methodology for estimating fuel economy in such cities. Vehicle characteristics and activity data, for both the formal fleet (private cars, motorcycles, light and heavy trucks) and informal fleet-minibuses (matatus), three-wheelers (tuktuks), goods vehicles (AskforTransport) and two-wheelers (bodabodas)-were collected and used to estimate fuel economy. Using two empirical models, general linear modelling (GLM) and artificial neural network (ANN), the relationships between vehicle characteristics for this fleet and fuel economy were analyzed for the first time. Fuel economy for bodabodas (4.6 ± 0.4 L/100 km), tuktuks (8.7 ± 4.6 L/100 km), passenger cars (22.8 ± 3.0 L/100 km), and matatus (33.1 ± 2.5 L/100 km) was found to be 2-3 times worse than in the countries these vehicles are imported from. The GLM provided the better estimate of predicted fuel economy based on vehicle characteristics. The analysis of survey data covering a large informal urban fleet helps meet the challenge of a lack of availability of vehicle data for emissions inventories. This may be useful to policy makers as emissions inventories underpin policy development to reduce emissions

    Development of the Low Emissions Analysis Platform – Integrated Benefits Calculator (LEAP-IBC) tool to assess air quality and climate co-benefits : Application for Bangladesh

    Get PDF
    Low- and middle-income countries have the largest health burdens associated with air pollution exposure, and are particularly vulnerable to climate change impacts. Substantial opportunities have been identified to simultaneously improve air quality and mitigate climate change due to overlapping sources of greenhouse gas and air pollutant emissions and because a subset of pollutants, short-lived climate pollutants (SLCPs), directly contribute to both impacts. However, planners in low- and middle-income countries often lack practical tools to quantify the air pollution and climate change impacts of different policies and measures. This paper presents a modelling framework implemented in the Low Emissions Analysis Platform – Integrated Benefits Calculator (LEAP-IBC) tool to develop integrated strategies to improve air quality, human health and mitigate climate change. The framework estimates emissions of greenhouse gases, SLCPs and air pollutants for historical years, and future projections for baseline and mitigation scenarios. These emissions are then used to quantify i) population-weighted annual average ambient PM2.5 concentrations across the target country, ii) household PM2.5 exposure of different population groups living in households cooking using different fuels/technologies and iii) radiative forcing from all emissions. Health impacts (premature mortality) attributable to ambient and household PM2.5 exposure and changes in global average temperature change are then estimated. This framework is applied in Bangladesh to evaluate the air quality and climate change benefits from implementation of Bangladesh's Nationally Determined Contribution (NDC) and National Action Plan to reduce SLCPs. Results show that the measures included to reduce GHGs in Bangladesh's NDC also have substantial benefits for air quality and human health. Full implementation of Bangladesh's NDC, and National SLCP Plan would reduce carbon dioxide, methane, black carbon and primary PM2.5 emissions by 25%, 34%, 46% and 45%, respectively in 2030 compared to a baseline scenario. These emission reductions could reduce population-weighted ambient PM2.5 concentrations in Bangladesh by 18% in 2030, and avoid approximately 12,000 and 100,000 premature deaths attributable to ambient and household PM2.5 exposures, respectively, in 2030. As countries are simultaneously planning to achieve the climate goals in the Paris Agreement, improve air quality to reduce health impacts and achieve the Sustainable Development Goals, the LEAP-IBC tool provides a practical framework by which planners can develop integrated strategies, achieving multiple air quality and climate benefits

    Preterm birth associated with maternal fine particulate matter exposure : A global, regional and national assessment

    Get PDF
    Reduction of preterm births (< 37 completed weeks of gestation) would substantially reduce neonatal and infant mortality, and deleterious health effects in survivors. Maternal fine particulate matter (PM2.5) exposure has been identified as a possible risk factor contributing to preterm birth. The aim of this study was to produce the first estimates of ambient PM2.5-associated preterm births for 183 individual countries and globally. To do this, national, population-weighted, annual average ambient PM2.5 concentration, preterm birth rate and number of livebirths were combined to calculate the number of PM2.5-associated preterm births in 2010 for 183 countries. Uncertainty was quantified using Monte-Carlo simulations, and analyses were undertaken to investigate the sensitivity of PM2.5-associated preterm birth estimates to assumptions about the shape of the concentration-response function at low and high PM2.5 exposures, inclusion of provider-initiated preterm births, and exposure to indoor air pollution. Globally, in 2010, the number of PM2.5-associated preterm births was estimated as 2.7 million (1.8–3.5 million, 18% (12–24%) of total preterm births globally) with a low concentration cut-off (LCC) set at 10 μg m− 3, and 3.4 million (2.4–4.2 million, 23% (16–28%)) with a LCC of 4.3 μg m− 3. South and East Asia, North Africa/Middle East and West sub-Saharan Africa had the largest contribution to the global total, and the largest percentage of preterm births associated with PM2.5. Sensitivity analyses showed that PM2.5-associated preterm birth estimates were 24% lower when provider-initiated preterm births were excluded, 38–51% lower when risk was confined to the PM2.5 exposure range in the studies used to derive the effect estimate, and 56% lower when mothers who live in households that cook with solid fuels (and whose personal PM2.5 exposure is likely dominated by indoor air pollution) were excluded. The concentration-response function applied here derives from a meta-analysis of studies, most of which were conducted in the US and Europe, and its application to the areas of the world where we estimate the greatest effects on preterm births remains uncertain. Nevertheless, the substantial percentage of preterm births estimated to be associated with anthropogenic PM2.5 (18% (13%–24%) of total preterm births globally) indicates that reduction of maternal PM2.5 exposure through emission reduction strategies should be considered alongside mitigation of other risk factors associated with preterm births

    Investigation of carbon dynamics in soil plant systems using in situ CO2 measurements

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Manual. Version 6.0 May 2019 revision

    No full text
    As air pollutant emissions management has increasingly to be conducted at wider geographical scales (including regional and hemispheric), the development and adoption of compatible approaches by different regional networks, is increasingly necessary. In particular, convergence of approaches for compiling emission inventories will enable the efficient transfer of information and expertise to assist the efforts of those regions with less experience. This Manual has been produced under the auspices of the Global Atmospheric Pollution Forum (the Forum) which is coordinated by the Stockholm Environment Institute (SEI), based at the University of York, U.K. and The International Union of Air Pollution Prevention Associations (IUAPPA). The purpose of the Forum Manual is to provide a simplified and user-friendly framework for emissions inventory preparation that is suitable for use in different developing and rapidly industrialising countries and which is compatible with other major international emissions inventory initiatives. However, the methodologies suggested in the Manual and Workbook are indicative only and the actual level of detail used for different parts of the inventory will vary according to data availability and capacity of the country concerned. In some cases, the level of detail possible will surpass that provided for in the Forum Manual/Workbook and users are then free to use alternative methods or tools so long as these are properly documented. Inventory methods are provided for estimating emissions from the following sources: fuel combustion and transformation; fugitive emissions from fuels; industrial process emissions (non-combustion); emissions from solvent and other product use; emissions from agriculture (including savanna fires); emissions from other vegetation fires and forestry; and emissions from the treatment and disposal of wastes. The air pollutants covered are sulphur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC), methane (CH4), ammonia (NH3), particulate matter (PM10, PM2.5, black carbon (BC), organic carbon (OC)) and carbon dioxide (CO2). An Excel workbook (FORUM Workbook Version 7.5.0) has been prepared as a companion to this Manual for use as an aid and tool in preparing national emissions inventories. Use of the Forum Manual and its companion Workbook will, it is hoped, enable non-OECD countries to develop emissions inventories in an accurate, complete, comparable, consistent and transparent manner to support the process of regional cooperation on the modelling and mitigation of transboundary air pollution

    Assessment of the impact of road transport policies on air pollution and greenhouse gas emissions in Kenya

    Get PDF
    We compile a detailed road transport inventory for greenhouse gases and air pollutants to explore energy emissions from alternative policy scenarios for the Kenya road transport sector. In 2010, road transport emissions accounted for 61% of total nitrogen oxides emissions in Kenya, 39% of fine particulate matter, 20% of carbon dioxide. In the business as usual scenario, road transport emissions increase between 4 and 31-fold from 2010 to 2050, with projected increases of motorcycles accounting for nearly all the increased pollutant emissions. Improved vehicle emission and fuel economy standards, fuel shift and investment in public transport are shown to be effective mitigation options to meet Kenya's climate change goals with the additional benefits of better air quality and improved health

    Updated global estimates of respiratory mortality in adults >/=30Years of age attributable to long-term ozone exposure

    No full text
    BACKGROUND: Relative risk estimates for long-term ozone (O3) exposure and respiratory mortality from the American Cancer Society Cancer Prevention Study II (ACS CPS-II) cohort have been used to estimate global O3-attributable mortality in adults. Updated relative risk estimates are now available for the same cohort based on an expanded study population with longer follow-up. OBJECTIVES: We estimated the global burden and spatial distribution of respiratory mortality attributable to long-term O3 exposure in adults >/=30y of age using updated effect estimates from the ACS CPS-II cohort. METHODS: We used GEOS-Chem simulations (2x2.5 masculine grid resolution) to estimate annual O3 exposures, and estimated total respiratory deaths in 2010 that were attributable to long-term annual O3 exposure based on the updated relative risk estimates and minimum risk thresholds set at the minimum or fifth percentile of O3 exposure in the most recent CPS-II analysis. These estimates were compared with attributable mortality based on the earlier CPS-II analysis, using 6-mo average exposures and risk thresholds corresponding to the minimum or fifth percentile of O3 exposure in the earlier study population. RESULTS: We estimated 1.04-1.23 million respiratory deaths in adults attributable to O3 exposures using the updated relative risk estimate and exposure parameters, compared with 0.40-0.55 million respiratory deaths attributable to O3 exposures based on the earlier CPS-II risk estimate and parameters. Increases in estimated attributable mortality were larger in northern India, southeast China, and Pakistan than in Europe, eastern United States, and northeast China. CONCLUSIONS: These findings suggest that the potential magnitude of health benefits of air quality policies targeting O3, health co-benefits of climate mitigation policies, and health implications of climate change-driven changes in O3 concentrations, are larger than previously thought. https://doi.org/10.1289/EHP1390
    corecore