1,167 research outputs found

    Mandibuloacral Dysplasia Caused by LMNA Mutations and Uniparental Disomy.

    Get PDF
    Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder characterized by postnatal growth retardation, craniofacial anomalies, skeletal malformations, and mottled cutaneous pigmentation. Hutchinson-Gilford Progeria Syndrome (HGPS) is characterized by the clinical features of accelerated aging in childhood. Both MAD and HGPS can be caused by mutations in the LMNA gene. In this study, we describe a 2-year-old boy with overlapping features of MAD and HGPS. Mutation analysis of the LMNA gene revealed a homozygous missense change, p.M540T, while only the mother carries the mutation. Uniparental disomy (UPD) analysis for chromosome 1 showed the presence of maternal UPD. Markers in the 1q21.3-q22 region flanking the LMNA locus were isodisomic, while markers in the short arm and distal 1q region were heterodisomic. These results suggest that nondisjunction in maternal meiosis followed by loss of the paternal chromosome 1 during trisomy rescue might result in the UPD1 and homozygosity for the p.M540T mutation observed in this patient

    Angiotensin II blockade and aortic-root dilation in Marfan's syndrome

    Get PDF
    Background: Progressive enlargement of the aortic root, leading to dissection, is the main cause of premature death in patients with Marfan's syndrome. Recent data from mouse models of Marfan's syndrome suggest that aortic-root enlargement is caused by excessive signaling by transforming growth factor (beta) (TGF-(beta)) that can be mitigated by treatment with TGF-(beta) antagonists, including angiotensin II-receptor blockers (ARBs). We evaluated the clinical response to ARBs in pediatric patients with Marfan's syndrome who had severe aortic-root enlargement. Methods: We identified 18 pediatric patients with Marfan's syndrome who had been followed during 12 to 47 months of therapy with ARBs after other medical therapy had failed to prevent progressive aortic-root enlargement. The ARB was losartan in 17 patients and irbesartan in 1 patient. We evaluated the efficacy of ARB therapy by comparing the rates of change in aortic-root diameter before and after the initiation of treatment with ARBs. Results: The mean (+/-SD) rate of change in aortic-root diameter decreased significantly from 3.54+/-2.87 mm per year during previous medical therapy to 0.46+/-0.62 mm per year during ARB therapy (P<0.001). The deviation of aortic-root enlargement from normal, as expressed by the rate of change in z scores, was reduced by a mean difference of 1.47 z scores per year (95% confidence interval, 0.70 to 2.24; P<0.001) after the initiation of ARB therapy. The sinotubular junction, which is prone to dilation in Marfan's syndrome as well, also showed a reduced rate of change in diameter during ARB therapy (P<0.05), whereas the distal ascending aorta, which does not normally become dilated in Marfan's syndrome, was not affected by ARB therapy. Conclusions: In a small cohort study, the use of ARB therapy in patients with Marfan's syndrome significantly slowed the rate of progressive aortic-root dilation. These findings require confirmation in a randomized trial

    Do Red Knots (Calidris Canutus Islandica) routinely skip Iceland during southward migration?

    Full text link
    Subspecies Calidris canutus islandica of the Red Knot breeds on the arctic tundra of northeastern Canada and northern Greenland and winters along the coasts of northwestern Europe. During northward migration, it stops over in either Iceland or northern Norway. It has been assumed that it does the same during southward migration. Using ratios of stable carbon isotopes (&delta; 13 C) in whole blood, blood cells, and plasma, we investigated evidence for a stopover in Iceland en route from the breeding grounds to the Dutch Wadden Sea. With the expected diet (shellfish) and stopover duration at Iceland (12-15 days, maximum 17 days) and the turnover rates of blood cells (15.1 days) and plasma (6.0 days), Red Knots that stopped in Iceland should arrive with a blood (cell) &delta; 13 C midway between a tundra (-24.7[per thousand]) and a marine value (-14.0[per thousand]) and a plasma &delta;13 C approaching the marine value (-15.3[per thousand]). However, many adults arriving at the Wadden Sea had &delta;13 C ratios in blood (cells) and plasma below these levels, and some arrived with clear tundra signals in blood cells, suggesting that they skipped Iceland during southward migration. Surprisingly, available data suggest this also to be true for juveniles during their first southward migration. The &delta; 13 C signature of second-year birds confirmed that they oversummered in the Wadden Sea. Our findings contradict the largely untested idea that juvenile shorebirds make more stopovers than adults as well as the idea that the migration between the Nearctic and Europe is necessarily a two-leg process. <br /

    Unusual patterns in 15N blood values after a diet switch in red knot shorebirds

    Full text link
    When a diet switch results in a change in dietary isotopic values, isotope ratios of the consumer's tissues will change until a new equilibrium is reached. This change is generally best described by an exponential decay curve. Indeed, after a diet switch in captive red knot shorebirds (Calidris canutus islandica), the depletion of 13C in both blood cells and plasma followed an exponential decay curve. Surprisingly, the diet switch with a dietary 15N/14N ratio (δ15N) change from 11.4 to 8.8 ‰ had little effect on δ15N in the same tissues. The diet-plasma and diet-cellular discrimination factors of 15N with the initial diet were very low (0.5 and 0.2 ‰, respectively). δ15N in blood cells and plasma decreased linearly with increasing body mass, explaining about 40 % of the variation in δ15N. δ15N in plasma also decreased with increasing body-mass change (r 2=.07). This suggests that the unusual variation in δ15N with time after the diet switch was due to interferences with simultaneous changes in body-protein turnover.

    Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome

    Get PDF
    ObjectivesThoracic aneurysms are the main cardiovascular complication of Marfan syndrome (MFS) resulting in premature death. MFS has been associated with mutations of the gene encoding fibrillin-1 (FBN1), a major constituent of the elastic fibers. Matrix metalloproteinases (MMPs) are important in the pathogenesis of abdominal aortic aneurysms but their precise role in MFS is not clear. Doxycycline is a nonspecific MMP inhibitor. The objective of the study was to determine whether docycycline can attenuate matrix degradation and prolong the survival of mice with MFS.MethodsThe study employed a well-characterized animal model of MFS, namely fibrillin-1 under-expressing mice (mgR/mgR mice) that die spontaneously from rupture of the thoracic aorta between 2 to 4 months of age. Mutant and wild type mice were given doxycycline in their drinking water at a concentration designed to provide 100 mg/kg/day beginning at postnatal day (PD) 1, whereas control mice were given water. Treated mice were divided into two groups. One group of animals was followed until death or for 7 months to determine lifespan. In the second group of mice, the ascending thoracic aortas were collected for histological analysis (H&E staining, trichrome staining) and zymography for examining MMP-2 and MMP-9 levels at 6 weeks.ResultsMMP-2 and MMP-9 levels were higher in the thoracic aorta of mgR/mgR mice compared with wild type littermates. Doxycycline-treated mgR/mgR mice lived 132 ± 14.6 days (n = 16) or significantly longer than untreated mutant mice (79 ± 6.7 days, n = 30) (P < 0.01). Connective tissue staining showed that doxycycline treatment decreased elastic fiber degradation in mgR/mgR mice. Furthermore, mgR/mgR mice treated with doxycycline had lower MMP-2 and MMP-9 levels compared with untreated mgR/mgR mice.ConclusionsThis study demonstrates that doxycycline significantly delays aneurysm rupture in MFS-like mice by inhibiting expression of tissue MMP-2 and MMP-9 and thus, degradation of the elastic matrix. The results suggest that MMPs contribute to the progression of thoracic aneurysm in MFS and that doxycycline has the potential to significantly alter the course of the disease.Clinical RelevanceAortic aneurysms are the main cardiovascular complication of Marfan syndrome (MFS) resulting in premature death. β-blockers offer some benefit but do not address the underlying cause of the progressive aortic degradation. Medical treatment that actually targets recently identified pathogenic factors leading to progressive matrix destruction could significantly impact the clinical course of the disease. A recent study using a mouse model of MFS has demonstrated that TGF- β antibodies or the angiotensin II type I receptor (AT1) antagonist losartan can both effectively rescue aneurysm progression. We have found that doxycycline, a nonspecific inhibitor of matrix metalloproteinases (MMPs), can decrease elastin degradation and prolong the lifespan of genetically engineered mice that mimic the human disease process. Based on these results, further testing may be warranted to determine if doxycycline could favorable impact the natural history of Marfan syndrome

    Absence of cardiovascular manifestations in a haploinsufficient TGFBR1 mouse model

    Get PDF
    Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming growth factor beta (TGF beta)-associated vasculopathies. In its most typical form it is characterized by the presence of hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of function mutations in the genes encoding TGF beta receptor 1 and 2 (TGFBR1 and -2), which lead to a paradoxical increase in TGF beta signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease, we characterized a new Tgfbr1 mouse model carrying a p.Y378* nonsense mutation. Study of the natural history in this model showed that homozygous mutant mice die during embryonic development due to defective vascularization. Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno) histochemically indistinguishable from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations, it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic mechanism in human LDS

    Exploring short gamma-ray bursts as gravitational-wave standard sirens

    Get PDF
    Recent observations support the hypothesis that a large fraction of "short-hard" gamma-ray bursts (SHBs) are associated with compact binary inspiral. Since gravitational-wave (GW) measurements of well-localized inspiraling binaries can measure absolute source distances, simultaneous observation of a binary's GWs and SHB would allow us to independently determine both its luminosity distance and redshift. Such a "standard siren" (the GW analog of a standard candle) would provide an excellent probe of the relatively nearby universe's expansion, complementing other standard candles. In this paper, we examine binary measurement using a Markov Chain Monte Carlo technique to build the probability distributions describing measured parameters. We assume that each SHB observation gives both sky position and the time of coalescence, and we take both binary neutron stars and black hole-neutron star coalescences as plausible SHB progenitors. We examine how well parameters particularly distance) can be measured from GW observations of SHBs by a range of ground-based detector networks. We find that earlier estimates overstate how well distances can be measured, even at fairly large signal-to-noise ratio. The fundamental limitation to determining distance proves to be a degeneracy between distance and source inclination. Overcoming this limitation requires that we either break this degeneracy, or measure enough sources to broadly sample the inclination distribution. (Abridged)Comment: 19 pages, 10 figures. Accepted for publication in ApJ; this version incorporates referee's comments and criticism

    Nuclear mRNA Degradation Pathway(s) Are Implicated in Xist Regulation and X Chromosome Inactivation

    Get PDF
    A critical step in X-chromosome inactivation (XCI), which results in the dosage compensation of X-linked gene expression in mammals, is the coating of the presumptive inactive X chromosome by the large noncoding Xist RNA, which then leads to the recruitment of other factors essential for the heterochromatinisation of the inactive X and its transcriptional silencing. In an approach aimed at identifying genes implicated in the X-inactivation process by comparative transcriptional profiling of female and male mouse gastrula, we identified the Eif1 gene involved in translation initiation and RNA degradation. We show here that female embryonic stem cell lines, silenced by RNA interference for the Eif1 gene, are unable to form Xist RNA domains upon differentiation and fail to undergo X-inactivation. To probe further an effect involving RNA degradation pathways, the inhibition by RNA interference of Rent1, a factor essential for nonsense-mediated decay and Exosc10, a specific nuclear component of the exosome, was analysed and shown to similarly impair Xist upregulation and XCI. In Eif1-, Rent1-, and Exosc10-interfered clones, Xist spliced form(s) are strongly downregulated, while the levels of unspliced form(s) of Xist and the stability of Xist RNA remain comparable to that of the control cell lines. Our data suggests a role for mRNA nuclear degradation pathways in the critical regulation of spliced Xist mRNA levels and the onset of the X-inactivation process
    corecore