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ABSTRACT

Recent observations support the hypothesis that a large fraction of “short-hard” gamma-ray bursts
(SHBs) are associated with the inspiral and merger of compact binaries. Since gravitational-wave
(GW) measurements of well-localized inspiraling binaries can measure absolute source distances with
high accuracy, simultaneous observation of a binary’s GWs and SHB would allow us to directly and
independently determine both the binary’s luminosity distance and its redshift. Such a “standard
siren” (the GW analog of a standard candle) would provide an excellent probe of the relatively
nearby (z . 0.3) universe’s expansion, independent of the cosmological distance ladder, and thus
complementing other standard candles. Previous work explored this idea using a simplified formalism
to study measurement by advanced GW detector networks, incorporating a high signal-to-noise ratio
limit to describe the probability distribution for measured parameters. In this paper we eliminate this
simplification, constructing distributions with a Markov Chain Monte Carlo technique. We assume
that each SHB observation gives both the source sky position and the time of coalescence, and we
take both binary neutron stars and black hole-neutron star coalescences as plausible SHB progenitors.
We examine how well parameters (particularly the luminosity distance) can be measured from GW
observatations of these sources by a range of ground-based detector networks. We find that earlier
estimates overstate how well distances can be measured, even at fairly large signal-to-noise ratio.
The fundamental limitation to determining distance to these sources proves to be the gravitational
waveform’s degeneracy between luminosity distance and source inclination. Despite this, we find that
excellent results can be achieved by measuring a large number of coalescing binaries, especially if
the worldwide network consists of many widely separated detectors. Advanced GW detectors will be
able to determine the absolute luminosity distance to an accuracy of 10–30% for NS-NS and NS-BH
binaries out to 600 and 1400 Mpc, respectively.
Subject headings: cosmology: distance scale—cosmology: theory—gamma rays: bursts—gravitational

waves

1. INTRODUCTION

1.1. Overview

There are presently two operational multikilometer in-
terferometric gravitational-wave (GW) detectors: LIGO4

and Virgo5. They are sensitive to the GWs produced
by the coalescence of two neutron stars to a distance of
roughly 30 Mpc, and to the coalescence of a neutron star
with a 10M⊙ black hole to roughly 60 Mpc. Over the
next several years these detectors will undergo upgrades
which are expected to extend their range by a factor
∼ 10. At these advanced sensitivity levels, most esti-
mates suggest that detectors should measure at least a
few, and possibly a few dozen, binary coalescence events
every year (e.g., Kopparapu et al. 2008).

It has long been argued that neutron star-neutron star
(NS-NS) and neutron star-black hole (NS-BH) merg-
ers are likely to be accompanied by a gamma-ray burst
(Eichler et al. 1989). Recent evidence supports the hy-
pothesis that many short-hard gamma-ray bursts (SHBs)
are indeed associated with such mergers (Fox et al. 2005,
Nakar et al. 2006, Berger et al. 2007, Perley et al. 2008).
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This suggests the exciting possibility that it may be pos-
sible to simultaneously measure a binary coalescence in
gamma rays (and associated afterglow emission) and in
GWs. The combined electromagnetic and gravitational
view of these objects is likely to teach us substantially
more than what we learn from either data channel alone.
Because GWs track a system’s global mass and energy
dynamics, measuring GWs from a coalescing binary al-
lows us to determine with exquisite accuracy “intrinsic”
binary properties, such as the masses and spins of its
members. As we describe in the following subsection,
GWs can also determine a system’s “extrinsic” prop-
erties, such as location on the sky and distance to the
source. In particular, the amplitude of a binary’s GWs
directly encodes its luminosity distance. Direct measure-
ment of a coalescing binary could thus be used as a cos-
mic distance measure: Binary inspiral would be a “stan-
dard siren” (the GW equivalent of a standard candle,
so-called due to the sound-like nature of GWs) whose
calibration depends only on the validity of general rela-
tivity (Dalal et al. 2006).

Unfortunately, GWs alone do not measure extrinsic
parameters as accurately as the intrinsic ones. As we de-
scribe in more detail in the following section, in general
a GW observation of a binary measures a complicated
combination of the distance to the binary, the binary’s
position on the sky, and the binary’s orientation, with
overall fractional accuracy ∼ 1/signal-to-noise. As the
distance is degenerate with the angular parameters, us-
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ing GWs to measure absolute distance to a source re-
quires a mechanism to break the degeneracy. Associat-
ing the GW coalescence waves with a short-hard gamma-
ray burst (SHB) is a near-perfect way to break this de-
generacy. In this paper we explore the ability of near-
future GW detector networks (such as LIGO and Virgo)
to constrain binary parameters (and in particular, dis-
tance to a binary), when used in conjunction with elec-
tromagnetic observations of the same event (such as an
associated SHB). We also examine how well these mea-
surements can be improved if planned detectors in West-
ern Australia (AIGO6) and in Japan’s Kamioka mine
(LCGT7) are operational. This paper substantially up-
dates and improves upon earlier work (Dalal et al. 2006,
hereafter DHHJ06), utilizing a significantly more sophis-
ticated and accurate parameter estimation technique. In
the next section we review standard sirens, while in Sec.
1.3 we briefly summarize DHHJ06. We follow this with
a subsection describing the organization and background
relevant for the rest of the paper.

1.2. Standard sirens

The GWs produced by the inspiral of two compact
bodies directly encode the luminosity distance to the
binary. It has long been recognized that GW in-
spiral measurements could thus be used as powerful
tools for cosmology. Schutz (1986) first demonstrated
this by analyzing how binary coalescences allow a di-
rect measurement of the Hubble constant; Marković
(1993) and Finn & Chernoff (1993) subsequently gener-
alized this approach to include other cosmological pa-
rameters. More recently, there has been much inter-
est in the measurements enabled when the GWs from
a merger are accompanied by a counterpart in the elec-
tromagnetic spectrum (Bloom et al. 2009, Phinney 2009,
Kulkarni & Kasliwal 2009). In this paper we focus exclu-
sively on GW observations of binaries that have an in-
dependent sky position furnished by electromagnetic ob-
servations (e.g., of gamma-rays associated with an SHB,
or an accompanying optical afterglow).

We begin by examining the gravitational waves from a
binary inspiral as measured in a single GW detector. For
simplicity, we only present here the lowest order contri-
bution to the waves; in our subsequent calculations, our
results are taken to higher order (see Sec. 2.1). The wave-
form generated by a source at luminosity distance DL,
corresponding to redshift z, is given by

h+ =
2(1 + z)M

DL
[π(1 + z)Mf ]

2/3 (
1 + cos2 ι

)

×

cos 2ΦN(t) ,

h× = −4(1 + z)M
DL

[π(1 + z)Mf ]
2/3

cos ι sin 2ΦN(t) ,

ΦN (t) = Φc −
[

tc − t

5(1 + z)M

]5/8

, f ≡ 1

π

dΦN

dt
. (1)

Here ΦN is the orbital phase, f is the GW frequency,

and M = m
3/5
1 m

3/5
2 /(m1 +m2)

1/5 is the binary’s “chirp
mass,” which sets the rate at which the frequency
changes. We use units with G = 1 = c; handy con-
version factors are M⊙ ≡ GM⊙/c

2 = 1.47 km, and

6 http://www.gravity.uwa.edu.au
7 http://gw.icrr.u-tokyo.ac.jp:8888/lcgt/

M⊙ ≡ GM⊙/c
3 = 4.92 × 10−6 seconds. The angle ι

describes the inclination of the binary’s orbital plane to
our line-of-sight: cos ι = L̂ · n̂, where L̂ is the unit vector
normal to the binary’s orbital plane, and n̂ is the unit
vector along the line-of-sight to the binary. The param-
eters tc and Φc are the time and orbital phase when the
frequency f diverges in this model. (In reality, we expect
finite size effects to substantially impact the waveform
before this.)

A given detector measures a linear combination of
these polarizations:

hmeas = F+(θ, φ, ψ)h+ + F×(θ, φ, ψ)h× , (2)

where θ and φ describe the binary’s position on the sky,
and the “polarization angle” ψ sets the inclination of
the components of L̂ orthogonal to n̂. The angles ι and
ψ fully specify the orientation vector L̂. For a particu-
lar detector geometry, the antenna functions F+ and F×

can be found in Thorne (1987). (In Sec. 2.2 we give a
general form for the gravitational waveform, without ap-
pealing to a specific detector, following the analysis of
Cutler & Flanagan 1994, hereafter abbreviated CF94.)

Several features of Eqs. (1) and (2) are worth com-
menting upon. First, note that the phase depends on the
redshifted chirp mass. Measuring phase thus determines
the redshifted chirp mass (Finn & Chernoff 1993). To
understand why we measure redshifted chirp mass, note
that M controls how fast the frequency evolves: using
Eq. (1), we find ḟ ∝ f11/3M5/3. One can thus regard
the chirp mass as entering the system’s dynamics as a
chirp time τc = GM/c3. For a source at cosmological
distance, this timescale is redshifted; the chirp mass we
infer is likewise redshifted. Redshift and chirp mass are
inextricably degenerate. This remains true even when
higher order effects (see, e.g., Blanchet 2006) are taken
into account: parameters describing a binary impact its
evolutionary dynamics as timescales which suffer cosmo-
logical redshift; the inferred values of those parameters
are thus redshifted. GW observations on their own can-
not directly determine a source’s redshift.

We next note that the amplitude depends on (1+z)M,
the angles (θ, φ, ι, ψ), and the luminosity distance DL.
Measuring a GW amplitude thus measures some tan-
gled combination of these parameters. By measuring
the phase, we measure the redshifted chirp mass suffi-
ciently well that (1 + z)M essentially decouples from
the amplitude. More concretely, matched filtering the
datastream with waveform templates should allow us to
determine the phase with fractional accuracy δΦ/Φ ∼
1/[(signal-to-noise)× (number of measured cycles)]; (1+
z)M should be measured with similar fractional accu-
racy. Since NS-NS binaries will radiate roughly 104 cy-
cles in band, and NS-BH binaries roughly 103 cycles, the
accuracy with which phase and redshifted chirp mass can
be determined should be exquisite.

Although (1 + z)M therefore decouples from the am-
plitude, the distance, position, and orientation angles re-
main highly coupled. If our goal is to determine the
source distance, we must break the degeneracy that the
amplitude’s functional form sets among these parame-
ters. For sources that we measure with ground-based
GW detectors, one way to break these degeneracies is
to measure the waves with multiple detectors. Studies
(Sylvestre 2004; Cavalier et al. 2006; Blair et al. 2008)
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have shown that doing so allows us to determine the po-
sition of a merging binary to within a few degrees, giving
us some information about the source’s distance and in-
clination.

Perhaps the best way to break these degeneracies
would be to measure the event electromagnetically. An
EM signature is almost certain to pin down the event’s
position far more accurately than GWs alone. The po-
sition angles then effectively decouple, much as the red-
shifted chirp mass decoupled. Using multiple detectors,
we can then determine the source’s orientation and its
distance. This gives us a direct, calibration-free measure
of the distance to a cosmic event. The EM signature
may also provide us with the event’s redshift, breaking
the GW degeneracy of redshift and intrinsic parameters,
and directly measuring both an event’s distance and red-
shift. In addition, if modeling or observations give us
evidence for beaming of the SHB emission, that could
strongly constrain the source inclination.

1.3. This work and previous analysis

Our goal is to assess how well we can determine the
distance DL to SHBs under the assumption that they
are associated with inspiral GWs. We consider both
NS-NS and NS-BH mergers as generators of SHBs, and
consider several plausible advanced detector networks:
the current LIGO/Virgo network, upgraded to advanced
sensitivity; LIGO/Virgo plus the proposed Australian
AIGO; LIGO/Virgo plus the proposed Japanese LCGT;
and LIGO/Virgo plus AIGO plus LCGT.

The engine of our analysis is the construction of a
probability function describing how measured source pa-
rameters (focusing in particular on DL) should be dis-
tributed following GW measurement. Briefly, this for-
malism builds a probability distribution for the parame-
ters θ of a source’s waveform. (Components θa of the vec-
tor θ are physical parameters such as a binary’s masses,
distance, sky position angles, etc.) Consider one detector
which measures a datastream s(t), containing noise n(t)

and a GW signal h(t, θ̂), where θ̂ describes the source’s
“true” parameters. In the language of Finn (1992), we
assume “detection” has already occurred; our goal in this
paper is to focus on the complementary problem of “mea-
surement.” Our aim is to assess how well we can deter-
mine these parameters from our data.

As shown by Finn (1992), given a model for our signal
h(t,θ), and assuming that the noise statistics are Gaus-
sian, the probability that the parameters θ describes the
data s is

p(θ|s) = p0(θ) exp [− ((h(θ) − s)|(h(θ) − s)) /2] . (3)

The inner product (a|b) describes the noise weighted
cross-correlation of a(t) with b(t), and is defined precisely
below. The distribution p0(θ) is a prior probability dis-
tribution; it encapsulates what we know about our signal
prior to measurement. We define θ̃ to be the parameters
that maximize Eq. (3).

DHHJ06 did a first pass on the analysis which we de-
scribe here. They used an expansion in the variables
(θ − θ̂) of the exponential to second order in the limit
of large signal-to-noise ratio (SNR), which we will hence-
forth refer to as the “Gaussian” approximation (cf. Finn
1992):

exp [− (h(θ) − s|h(θ) − s) /2] ≃

exp

[

−1

2

(

∂h

∂θa

∣

∣

∣

∣

∣

∂h

∂θb

)

δθaδθb

]

, (4)

where δθa = θa − θ̂a. In this limit, θ̃ = θ̂ (at least for
uniform priors). The matrix

Γab ≡
(

∂h

∂θa

∣

∣

∣

∣

∣

∂h

∂θb

)

(5)

is the Fisher information matrix; its inverse Σab is the
covariance matrix. Diagonal entries Σaa describe the
variance of parameter θa; off-diagonal entries describe
correlations between different parameters.

The Gaussian approximation to Eq. (3) is known to be
accurate when the SNR is large; however, it is not clear
what “large” really means. Given current binary coales-
cence rate estimates, it is expected that most events will
come from DL ∼ a few× 100 Mpc. In such cases, we can
expect an advanced detector SNR ∼ 10. It is unclear
that this value is sufficiently high such that the “large
SNR” approximation is appropriate. Indeed, some of the
results in DHHJ06 seem somewhat anomalous. For ex-
ample, it had been expected that an Australian detector
would have a disproportionate impact on the network’s
ability to determine distance and inclination for many
events, since a southern hemisphere detector’s antenna
functions would be substantially different than its north-
ern cousins, offering excellent constraints on an event’s
position and inclination. In fact, DHHJ06 found that a
southern detector’s main impact was simply to add addi-
tional SNR to a measurement—helpful, but not dispro-
portionately so. We are concerned that this might be an
artifact of the Gaussian approximation used in DHHJ06.

In this analysis we do not use this Gaussian approx-
imation, but instead use Markov Chain Monte Carlo
(MCMC) techniques (in particular, the Metropolis-
Hastings algorithm) to explore our parameter distribu-
tions. The details of this technique are summarized in
Sec. 3, and described in detail in Lewis & Bridle (2002).
We find that MCMC techniques indeed indicate that the
Gaussian approximation to Eq. (3) is failing in its esti-
mate of a system’s extrinsic parameters (though it ap-
pears to do quite well for intrinisic parameters such as
masses). In particular, we find that an Australian detec-
tor would, in fact, have an outstanding impact on our
ability to use SHB GWs as standard sirens. In addition,
DHHJ06 restrict themselves to NS-NS binaries, observed
with a four detector network. In what follows we relax
both of these assumptions.

1.4. Organization of this paper

We begin in Sec. 2 by summarizing how GWs encode
the distance to a coalescing binary. We first describe
the post-Newtonian (PN) gravitational waveform we use
in Sec. 2.1, and then describe how that wave interacts
with and can be measured by a network of detectors in
Sec. 2.2. Our discussion of the network-wave interaction
is heavily based on the notation and formalism used in
Sec. 4 of CF94, as well as the analysis of Anderson et al.
(2001). Section 2.2 is sufficiently dense that we sum-
marize its major points in Sec. 2.3 before concluding, in
Sec. 2.4, with a description of the various GW detectors
which we include in our analysis.
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We outline our parameter estimation formalism in Sec.
3. In Sec. 3.1 we describe in more detail how to construct
the probability distributions describing parameter mea-
surement mentioned above (Sec. 1.3). We then give, in
Sec. 3.2, a brief description of our selection procedure
based on SNR detection thresholds. This procedure sets
physically motivated priors for some of our parameters.
The Markov Chain Monte Carlo technique we use to ex-
plore this function is described in Sec. 3.3. How one ap-
propriately averages this distribution to give “noise aver-
aged” results (and to compare with previous literature)
is discussed in Sec. 3.4.

In Sec. 4 we discuss the validation of our code. We be-
gin by attempting to reproduce some of the key results
on distance measurement presented in CF94. Because of
the rather different techniques used by Cutler & Flana-
gan, we do not expect exact agreement. It is reassuring
to find, nonetheless, that we can reconstruct with very
good accuracy all of the major features of their analysis.
We then examine how these results change as we vary
the amplitude (moving a fiducial test binary to smaller
and larger distances), as we vary the number of detectors
in our network, and as we vary the source’s inclination.

Our main results are given in Sec. 5. We consider sev-
eral different plausible detector networks and examine
measurement errors for two “fiducial” binary systems,
comprising either two neutron stars (NS-NS) with phys-
ical masses (i.e., rest frame masses, not including red-
shift effects) of m1 = m2 = 1.4M⊙, or a neutron star
and black hole (NS-BH) system with physical masses
m1 = 1.4M⊙ and m2 = 10M⊙. Assuming a constant
comoving cosmological density, we distribute potential
GW-SHB events on the sky, and select from this distribu-
tion using a detection threshold criteria set for the entire
GW detector network. We summarize some implications
of our results in Sec. 6. A more in-depth discussion of
these implications, particularly with regard to what they
imply for the ability of standard sirens to measure the ex-
pansion of the universe, will be presented in a companion
paper.

Throughout this paper we use units with G = 1, c = 1.
Because we often refer to “redshifted” masses, we define
the shorthand mz = (1 + z)m for any mass parameter
m.

2. MEASURING GRAVITATIONAL WAVES FROM
INSPIRALING BINARIES

In this section we review the GW description used in
our analysis, the formalism describing how these waves
interact with a network of detectors, and the properties
of the detectors.

2.1. GWs from inspiraling binaries

The inspiral and merger of a compact binary’s mem-
bers can be divided into three consecutive phases. The
first and longest is a gradual adiabatic inspiral, when
the members slowly spiral towards one another driven
by the loss of orbital energy and angular momentum due
to radiative backreaction. Post-Newtonian (PN) tech-
niques (an expansion in the gravitational potential M/r,
or equivalently for bound systems, the orbital speed v2)
allow a binary’s evolution, and its emitted GWs, to be
modeled analytically to high order; see Blanchet (2006)
for a review. When the bodies come close together, the

PN expansion is no longer valid, and direct numerical
calculation is required. Recent breakthroughs in numeri-
cal relativity are making it possible to fully model the
strong-field, dynamical merger of the two bodies into
one; see Pretorius (2005), Shibata & Uryū (2006), and
Etienne et al. (2008) for discussion. If the end state is a
single black hole, the final waves from the system should
be described by a ringdown as the black hole settles down
to the Kerr spacetime solution. Note that much success
has been achieved in analytically modeling the entire coa-
lescence process using the “effective one body” technique.
Initially proposed in Buonanno & Damour (1999), recent
results show good agreement over the entire coalescence
with the most accurately available numerical simulations
(see Buonanno et al. 2009).

In this work we are concerned only with the inspiral
phase, and will accordingly use the PN waveform to de-
scribe our waves. In particular, we use the so-called “re-
stricted” PN waveform. Following CF94, the waveform
of a binary inspiral may be written schematically

h(t) = Re

(

∑

x,m

hx
m(t)eimΦorb(t)

)

. (6)

Here x indicates the PN order [hx is computed to O(v2x)
in orbital speed], m denotes harmonic order (e.g., m = 2

is quadrupole), and Φorb(t) =
∫ t

Ω(t′)dt′ is orbital phase
[with Ω(t) the orbital angular frequency]. The “re-
stricted” waveform neglects all PN amplitude terms be-
yond the leading one, and considers only the dominant
m = 2 contribution to the phase. The phase is itself
computed to high PN order. As argued in CF94, these
restrictions are useful because accumulated phase infor-
mation has a greater impact on measurement accuracies
than information in the amplitude.

Let the unit vector n̂ point to a binary on the sky
(so that the waves propagate to us along −n̂), and let

the unit vector L̂ denote the normal along the binary’s
orbital angular momentum. The waveform is fully de-
scribed by the two polarizations:

h+(t)=
2Mz

DL
[πMzf(t)]

2/3
[1 + (L̂ · n̂)2] cos[Φ(t)] ,

≡ 4Mz

DL
[πMzf(t)]

2/3 A+(n̂, L̂) cos[Φ(t)] ; (7)

h×(t)=−4Mz

DL
[πMzf(t)]2/3(L̂ · n̂) sin[Φ(t)] ,

≡ 4Mz

DL
[πMzf(t)]

2/3 A×(n̂, L̂) sin[Φ(t)] . (8)

Equations (7) and (8) are nearly identical to those given
in Eq. (1). In particular, Mz is the binary’s redshifted
chirp mass, DL is the luminosity distance to the binary,
and we have explicitly defined the inclination angle cos ι
in terms of the vectors n̂ and L̂. For later convenience,
we have moved all dependence on sky position and ori-
entation into the functions A+,×. In Sec. 2.2, we discuss
how these polarizations enter the GW field more gener-
ally, and how they interact with our detectors.

A major difference in these forms of h+ and h×, as
compared to Eq. (1), is that we now compute the GW
phase to higher order:

Φ(t) = 2π

∫

f(t′) dt′ = 2π

∫

f

df/dt
df , (9)
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using the 2nd-post-Newtonian (2PN) frequency sweep
(Blanchet et al. 1995)

df

dt
=

96

5
π8/3M5/3

z f11/3

[

1 −
(

743

336
+

11

4
η

)

(πMzf)2/3

+(4π)(πMzf)

+

(

34103

18144
+

13661

2016
η +

59

18
η2

)

(πMzf)4/3

]

. (10)

Higher order results for df/dt are now known
(Blanchet et al. 2002a,b, 2004), but 2PN order will be
adequate for our purposes. Since distance measurements
depend on accurate amplitude determination, we do not
need a highly refined model of the wave’s phase. The rate
of sweep is dominantly determined by the chirp mass,
but there is an important correction due to η = µ/M =
m1m2/(m1 +m2)

2, the reduced mass ratio. Note that η
is not redshifted; both µ and M (the reduced mass and
total mass, respectively) acquire (1 + z) corrections, so
their ratio is the same at all z. Accurate measurement of
the frequency sweep can thus determine both Mz and η
(or Mz and µz), potentially determining the redshifted
masses of each member of the binary.

We will often find it useful to work in the frequency
domain, using the Fourier transform h̃(f) rather than
h(t):

h̃(f) ≡
∫ ∞

−∞

e2πifth(t) dt . (11)

An approximate analytical result for h̃(f) can be
found using the stationary phase approximation
(Finn & Chernoff 1993), which describes the Fourier
transform when f changes slowly:

h̃+(f)=

√

5

96

π−2/3M5/6
z

DL
A+f

−7/6eiΨ(f) , (12)

h̃×(f)=

√

5

96

π−2/3M5/6
z

DL
A×f

−7/6eiΨ(f)−iπ/2 . (13)

“Slowly” means that f does not change very much over
a single wave period 1/f , so that (df/dt)/f ≪ f . The
validity of this approximation for the waveforms we con-
sider, at least until the last moments before merger, has
been demonstrated in previous work (Droz et al. 1999).
The phase function Ψ(f) in Eqs. (12) and (13) is given
by

Ψ(f)=2πftc − Φc −
π

4
+

3

128
(πMf)−5/3 ×

[

1 +
20

9

(

743

336
+

11

4
η

)

(πMzf)2/3 − 16π(πMzf)

+10

(

3058673

1016064
+

5429

1008
η +

617

144
η2

)

(πMzf)4/3

]

.

(14)

As in Eq. (1), tc is called the “time of coalescence” and
defines the time at which f diverges within the PN frame-
work; Φc is similarly the “phase at coalescence.” Follow-
ing the method employed in earlier works, we assume an
abrupt (and unphysical) transition between the inspiral
and merger phases at the so-called innermost stable cir-
cular orbit (ISCO), fISCO = (6

√
6πMz)

−1. For NS-NS,

fISCO occurs at high frequencies where ground-based de-
tectors have poor sensitivity; as such, we are confident
that this abrupt transition has little impact on our re-
sults. For NS-BH, fISCO is likely to be in a band with
good sensitivity. Better modeling of this transition could
be important in this case.

In this analysis, we neglect effects which depend on
spin. In general relativity, spin drives precession effects
which can “color” the waveform in important ways, and
which can in principle have important observational ef-
fects (see, e.g., Lang & Hughes 2006, van der Sluys et al.
2008). These effects are important when the dimension-
less Kerr spin parameter is fairly large. Neutron stars are
unlikely to spin fast enough for their angular momentum
to drive interesting precessions during the time that they
are in the band of GW detectors. To show this, write the
moment of inertia of a neutron star as

INS =
2

5
κMNSR

2
NS , (15)

where MNS and RNS are the star’s mass and radius, and
the parameter κ describes the extent to which its mass
is centrally condensed (compared to a uniform sphere).
Detailed calculations with different equations of state in-
dicate κ ∼ 0.7–1 [cf. Cook et al. (1994); this range comes
the slowly rotating configurations in their Tables 12, 15,
18, and 21]. For a neutron star whose spin period is PNS,
one finds that the Kerr parameter is given by

aNS =
2πcINS

GM2
NSPNS

≃0.06κ

(

RNS

12 km

)2(
1.4M⊙

MNS

)(

10 msec

PNS

)

.(16)

As long as the neutron star spin period is longer than
∼ 10 msec, aNS is small enough that spin effects can
probably be safely neglected in our analysis. Strictly
speaking, we should include spin in our models of BH-
NS binaries; we leave this to a later analysis. We note
that van der Sluys et al. (2008) included black hole spin
effects in an analysis which did not assume known source
position. They found that spin-induced modulations
greatly improved the ability of GW detectors to local-
ize a source, even when measured by only one detector.
This suggests that, if position is known, spin modula-
tions would likewise greatly improve our ability to mea-
sure source inclination and distance.

Our GWs depend on nine parameters: two mass pa-
rameters Mz and µz, two sky position angles (which

set n̂), two orientation angles (which set L̂), time at
coalescence tc, phase at coalescence Φc, and luminos-
ity distance to the source DL. When sky position is
known (e.g., from an SHB observation, as assumed in
this analysis), the parameter set is reduced to seven:
{Mz, µz, DL, tc, cos ι, ψ,Φc}.

2.2. Measurement of GWs by a detector network

We now examine how the waves described in Sec. 2.1
interact with a network of detectors. We begin by intro-
ducing some conventions to describe our binary and our
detectors. We do this geometrically, using vectors which
describe our source’s position and orientation, and our
detectors’ positions and orientations.
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As described in the previous section, a source’s sky
position is given by a unit vector n̂ (which points from the
center of the Earth to the binary), and its orientation is

given by a unit vector L̂ (which points along the binary’s
orbital angular momentum). We construct from these a
pair of axes which describe the binary’s orbital plane:

X̂ =
n̂× L̂

|n̂× L̂|
, Ŷ = − n̂ × X̂

|n̂× X̂|
. (17)

These axes in turn are used to define the polarization
basis tensors

e+ = X̂⊗ X̂ − Ŷ ⊗ Ŷ , (18)

e× = X̂⊗ Ŷ + Ŷ ⊗ X̂ . (19)

From these, the transverse-traceless metric perturbation
which describes the GWs emitted by our source can be
written

hij = h+e
+
ij + h×e

×
ij . (20)

We next characterize the GW detectors. Each detector
is an L-shaped interferometer whose arms define two-
thirds of an orthonormal triple. Denote by x̂a and ŷa

the unit vectors along the arms of the a-th detector in
our network; we call these the x- and y-arms. (The vec-
tor ẑa = x̂a × ŷa points radially from the center of the
Earth to the detector’s vertex.) These vectors define the
response tensor for detector a:

Dij
a =

1

2

[

(x̂a)i(x̂a)j − (ŷa)i(ŷa)j
]

. (21)

The response of detector a to a GW is given by

ha =Dij
a hij

≡ e−2πi(n·xa)f (Fa,+h+ + Fa,×h×) . (22)

where xa is the position of the ath detector and the factor
(n · xa) measures the time of flight between detector a
and the coordinate origin. The second form of Eq. (22)
shows how the antenna response functions introduced in
Eq. (2) are built from the wave tensor and the response
tensor.

Thus far this discussion has been completely frame-
independent, in that we have defined all of our vectors
and tensors without reference to a particular coordinate
system. To facilitate an analysis of how inspiral GWs
interact with a network of detectors, we now introduce a
coordinate system for our detectors following the analysis
of Anderson et al. (2001) [who in turn use the WGS-84
Earth model (Althouse et al. 1998)]. In this system, the
Earth is taken to be an oblate ellipsoid with semi-major
axis a = 6.378137 × 106 meters, and semi-minor axis
b = 6.356752314× 106 meters. Our coordinates are fixed
relative to the center of the Earth. The x-axis (which
points along i) pierces the Earth at latitude 0◦ North,
longitude 0◦ East (normal to the equator at the prime
meridian); the y-axis (along j) pierces the Earth at 0◦

North, 90◦ East (normal to the equator in the Indian
ocean somewhat west of Indonesia); and the z-axis (along
k) pierces the Earth at 90◦ North (the North geographic
pole).

A GW source at (θ, φ) on the celestial sphere has sky
position vector n̂:

n̂ = sin θ cosφi + sin θ sinφj + cos θk . (23)

The polarization angle, ψ, is the angle (measured clock-
wise about n̂) from the orbit’s line of nodes to the

source’s X̂-axis. In terms of these angles, the vectors
X̂ and Ŷ are given by (Anderson et al. 2001)

X̂=(sinφ cosψ − sinψ cosφ cos θ)i

−(cosφ cosψ + sinψ sinφ cos θ)j + sinψ sin θk ,

(24)

Ŷ=(− sinφ sinψ − cosψ cosφ cos θ)i

+(cosφ sinψ − cosψ sinφ cos θ)j + cosψ sin θk .

(25)

Note that the angle φ is related to the right ascension, α,
by α = φ+GMST (where GMST is the Greenwich mean
sidereal time at which the signal arrives), and θ is related
to the declination, δ, by δ = π/2− θ (cf. Anderson et al.
2001, Appendix B). Combining Eqs. (24) and (25) with
Eqs. (18)–(20) allows us to write hij for a source in co-
ordinates adapted to this problem.

We now similarly describe our detectors in terms of
convenient coordinates. Detector a is at East longitude
λa and North latitude ϕa (not to be confused with sky
position angle φ). The unit vectors pointing East, North,
and Up for this detector are

eE
a =− sinλai + cosλaj , (26)

eN
a =− sinϕa cosλai− sinϕa sinλaj + cosϕak , (27)

eU
a =cosϕa cosλai + cosϕa sinλaj − cosϕak . (28)

The x-arm of detector a is oriented at angle Υa North
of East, while its y-arm is at angle Υa + π/2. Thanks to
the Earth’s oblateness, the x- and y-arms are tilted at
angles ωx,y

a to the vertical. The unit vectors x̂a, ŷa can
thus be written

x̂a =cosωx
a cosΥae

E
a + cosωx

a sin Υae
N
a + sinωx

aeU ,

(29)

ŷa =− cosωy
a sin Υae

E
a + cosωy

a cosΥae
N
a + sinωy

ae
U .

(30)

Combining Eqs. (29) and (30) with Eq. (21) allows us to
write the response tensor for each detector in our net-
work.

2.3. Summary of the preceding section

Section 2.2 is sufficiently dense that a brief summary
may help clarify its key features, particularly with re-
spect to the quantities we hope to measure. From Eq.
(22), we find that each detector in our network measures
a particular weighted sum of the two GW polarizations
h+ and h×. We can rewrite the waveform detector a
measures as

ha =
4Mz

DL
Ap [πMzf(t)]

2/3
cos [Φ(t) + Φp] , (31)

where we have introduced detector a’s “polarization am-
plitude”

Ap =

√

(Fa,+A+)
2

+ (Fa,×A×)
2
, (32)

and its “polarization phase”

tan Φp =
Fa,×A×

Fa,+A+
. (33)
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Cutler (1998) introduced these quantities to describe the
response of the space-based LISA detector to a source’s
waves. As previously discussed, the intrinsic GW phase,
Φ(t), is a strong function of the redshifted chirp mass,
Mz, the reduced mass, µz, the time of coalescence, tc,
and the phase at coalescence, Φc. Measuring the phase
determines these four quantities, typically with very good
accuracy.

Consider for a moment measurements by a single de-
tector. The polarization amplitude and phase depend
on the binary’s sky position, (θ, φ) or n̂, and orienta-

tion, (ψ, ι) or L̂. [They also depend on detector position,
(λa, ϕa), orientation, Υa, and tilt, (ωx

a , ω
y
a). Since these

angles are known and fixed, we ignore them in this dis-
cussion.] If the angles (θ, φ, ψ, ι) are not known, then a
single detector cannot separate them, nor can it separate
out the distance, DL.

Multiple detectors can, at least in principle, separately
determine these parameters. Each detector measures its
own amplitude and polarization phase, and by combin-
ing their outputs, we can fit to the four unknown an-
gles and the distance, DL. Various works have analyzed
how well this can be done assuming that the position
and orientation are completely unknown (Sylvestre 2004;
Cavalier et al. 2006; Blair et al. 2008). Van der Sluys et
al. (2008) performed such an analysis for measurements
of NS-BH binaries, including the effect of orbital preces-
sion induced by the black hole. These precessions effec-
tively make the angles ι and ψ time dependent, breaking
the degeneracy among these angles and DL in a com-
pletely different way.

In what follows, we assume that an electromagnetic
identification pins down the angles (θ, φ), so that they
do not need to be determined from the GW data. We
then face the substantially less challenging problem of
determining ψ, ι, and DL from the various waveforms,
ha, that we measure at the detectors. We will also exam-
ine the impact of a constraint on the inclination, ι. Long
bursts are believed to be strongly collimated, emitting
into jets with opening angles of just a few degrees. Less
is known about the collimation of SHBs, but it is plausi-
ble that their emission may be primarily along a preferred
axis (presumably the progenitor binary’s orbital angular
momentum axis). We are particularly interested in as-
sessing the extent to which constraining ι to be within
some Gaussian distribution with opening angle δι ∼ 25◦

of the “face-on” configuration (|n̂ · L̂| = 1) improves our
ability to determine the source’s distance.

2.4. GW detectors used in our analysis

Here we briefly summarize the properties of the GW
detectors that we consider:
LIGO: The Laser Interferometer Gravitational-wave Ob-
servatory consists of two 4 kilometer interferometers
located in Hanford, Washington (US) and Livingston,
Louisiana (US). These instruments have achieved their
“initial” sensitivity goals; an upgrade to “advanced”
sensitivity is expected to be completed around 2015.
We show the projected advanced sensitivity in Fig. 1.
Broadly speaking, the noise spectrum is dominated by
seismic vibrations due to ground and human activity at
f < 10 Hz, thermal vibrations in the band 10 Hz < f <
50 Hz, and photon shot noise for f > 50 Hz. At present,

Fig. 1.— Projected noise curve for Advanced LIGO. We assume
a lower frequency cut-off of 10 Hz.

the Hanford site also houses a 2 kilometer interferome-
ter; this will be extended to a full 4 kilometer baseline
in the advanced era. As such, the LIGO network will
consist of two instruments at Hanford and one in Liv-
ingston. Because the two Hanford instruments are likely
to have somewhat correlated noise (particularly at low
frequencies), we assume only one instrument in Hanford
for most of our analysis.
Virgo: The Virgo detector near Pisa, Italy has slightly
shorter arms than LIGO (3 kilometers), but should
achieve similar advanced detector sensitivity, on roughly
the same timescale as the LIGO detectors. For simplic-
ity, we will assume that Virgo’s sensitivity is the same as
LIGO’s in our analysis.

Our baseline detector network consists of the LIGO
Hanford and Livingston sites, and Virgo; these are in-
struments which are running today, and will be upgraded
over the next decade. We also examine the impact of
adding two proposed interferometers to this network:
AIGO: The Australian International Gravitational Ob-
servatory is a proposed multikilometer interferometer
that would be located in Gingin, Western Australia.
AIGO’s proposed site in Western Australia is particu-
larly favourable due to low seismic and human activity.
LCGT: The Large-scale Cryogenic Gravitational-wave
Telescope is a proposed multikilometer interferometer
that would be located in the Kamioka observatory, 1 kilo-
meter underground. This location takes advantage of the
fact that local ground motions tend to decay rapidly as
we move away from the Earth’s surface. They also plan
to use cryogenic cooling to reduce thermal noise.

As with Virgo, we will take the sensitivity of AIGO
and LCGT to be the same as LIGO for our analysis.
Table 1 gives the location and orientation of these detec-
tors, needed to compute the response function for each
member of our network.

3. ESTIMATION OF BINARY PARAMETERS

3.1. Overview of formalism

We now give a brief summary of parameter estima-
tion. In particular, we lay the foundations for estimat-
ing measurement accuracies given a GW detector’s noise
spectrum. Further details are discussed in Finn (1992),
Królak et al. (1993), and CF94.

The datastream of detector a, sa(t), has two major
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TABLE 1
GW detectors we consider (positions and orientations)

Detector East Long. λ North Lat. ϕ Orientation Υ x-arm tilt ωx y-arm tilt ωy

LIGO-Han −119.4◦ 46.5◦ 126◦ (−6.20 × 10−4)◦ (1.25 × 10−5)◦

LIGO-Liv −90.8◦ 30.6◦ 198◦ (−3.12 × 10−4)◦ (−6.11 × 10−4)◦

Virgo 10.5◦ 43.6◦ 70◦ 0.0◦ 0.0◦

AIGO 115.7◦ −31.4◦ 0◦ 0.0◦ 0.0◦

LCGT 137.3◦ 36.4◦ 25◦ 0.0◦ 0.0◦

contributions: The true GW signal ha(t; θ̂) (constructed
by contracting a source’s GW tensor hij with detector
a’s response tensor Dij

a ; cf. Sec. 2.2), and a specific real-
ization of detector noise na(t),

sa(t) = ha(t; θ̂) + na(t) . (34)

The incident gravitational wave strain is assumed to de-
pend on (unknown) true parameters θ̂. As in Sec. 1.3,

θ̂ is a vector whose components are binary parameters.
Below we use a vector s whose components sa are the
datastreams of each detector (and likewise h and n are
vectors whose components are the GW and noise content
of each detector, respectively).

We assume the noise to be stationary, zero mean, and
Gaussian. This lets us categorize it using the spectral
density, as follows. First, define the noise correlation
matrix:

Cn(τ)ab = 〈na(t+ τ)nb(t)〉 − 〈na(t+ τ)〉 〈nb(t)〉
= 〈na(t+ τ)nb(t)〉 , (35)

where the angle brackets are ensemble averages over noise
realizations, and the zero mean assumption gives us the
simplified form on the second line. For a = b, this is
the auto-correlation of detector a’s noise; otherwise, it
describes the correlation between detectors a and b. The
(one-sided) power spectral density matrix is the Fourier
transform of this:

Sn(f)ab = 2

∫ ∞

−∞

dτ e2πifτCn(τ)ab . (36)

Note that this is defined for f > 0 only. For a = b, this
is the spectral density of noise power in detector a; for
a 6= b, it again describes correlations between detectors.
From these definitions, one can show that

〈ña(f) ñb(f
′)∗〉 =

1

2
δ(f − f ′)Sn(f)ab. (37)

For Gaussian noise, this statistic completely character-
izes our detector noise. No real detector is of course
completely Gaussian, but by using multiple, widely-
separated detectors non-Gaussian events can be rejected.
In our analysis, we assume the detectors’ noises are un-
correlated such that Eq. (37) becomes

〈ña(f) ñb(f
′)∗〉 =

1

2
δabδ(f − f ′)Sn(f)a. (38)

Finally, for simplicity we assume that Sn(f)a has the uni-
versal shape Sn(f) projected for advanced LIGO. This
spectrum is shown in Fig. 1.

The central quantity of interest in parameter estima-
tion is the posterior probability distribution function
(PDF) for θ given detector output s, which is defined
as

p(θ | s) = N p(0)(θ)LTOT(s |θ) . (39)

(Note that we assume a GW has been detected.) In
Eq. (39), N denotes a normalization constant, p(0)(θ)
is the PDF that represents the prior probability that
a measured GW is described by the parameters θ, and
LTOT(s |θ) is the total likelihood function (e.g., MacKay
2003). The likelihood function measures the relative con-
ditional probability of observing a particular set of data
s given that a measured signal h depending on some un-
known set of parameters, θ and noise, n. Because we
assume that the noise is independent and uncorrelated
at each detector site, we may take the total likelihood
function to be the product of the individual likelihood at
each detector:

LTOT(s |θ) = ΠaLa(sa |θ) , (40)

where La, the likelihood computed at detector a, is given
by (Finn 1992)

La (s |θ) = e−
(

ha(θ)−sa

∣

∣ha(θ)−sa

)

/2 . (41)

The inner product (. . . | . . .) on the vector space of signals
is defined as

(g|h) = 2

∫ ∞

0

df
g̃∗(f)h̃(f) + g̃(f)h̃∗(f)

Sn(f)
. (42)

This definition means that the probability of the random
noise n(t) assuming a particular realization n0(t) is

p(n = n0) ∝ e−(n0|n0)/2. (43)

For clarity, we distinguish between various definitions
of the signal-to-noise ratio (SNR). The true SNR at de-
tector a, associated with a given instance of noise for a
measurement at a particular detector, is defined as (see
CF94)

(

S

N

)

a,true

=
(ha | sa)
√

(ha |ha)
. (44)

This is a random variable with Gaussian PDF of unit
variance. For an ensemble of realizations of the detector
noise na, the so-called average SNR at detector a is given
by

(

S

N

)

a,ave

=
(ha|ha)

rms (ha|na)
= (ha|ha)1/2. (45)

Consequently, we can define the combined true and av-
erage SNRs of a coherent network of detectors:

(

S

N

)

true

=

√

√

√

√

∑

a

(

S

N

)2

a,true

, (46)

and

(

S

N

)

ave

=

√

√

√

√

∑

a

(

S

N

)2

a,ave

. (47)
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Estimating the parameter set θ often uses the “max-
imum likelihood” method following either a Bayesian
(Loredo 1989, Finn 1992, CF94, Poisson & Will 1995)
or frequentist point of view (Królak et al. 1993, CF94).
We do not attempt to review these differing philosophies,
and instead refer to Appendix A2 of CF94 for detailed
discussion. It is worth noting that, in the GW literature,
the “maximum likelihood” or “maximum a posterior” are
often interchangeably referred to as the “best-fit” param-
eters, which can be confusing. The maximum a poste-
rior is the parameter set θ̃MAP which maximizes the full
posterior probability, Eq. (39); likewise, the maximum

likelihood is the parameter set θ̃ML which maximizes the
likelihood function, Eq. (40).

Following the approach advocated by CF94, we intro-
duce the Bayes estimator θ̃i

BAYES(s), defined as

θ̃i
BAYES(s) ≡

∫

θi p(θ | s)dθ . (48)

The integral is performed over the whole parameter set
θ; dθ = dθ1dθ2 . . . dθn. Similarly, we define the rms
measurement errors Σij

BAYES

Σij
BAYES =

∫

(θi−θ̃i
BAYES) (θj−θ̃j

BAYES) p(θ | s)dθ. (49)

The meaning of the Bayes estimator can be understood
as follows. Consider a single detector which records an
arbitrarily large ensemble of GW signals. Within this en-
semble, there will be a subset of signals with the same de-
tector output s(t). Although these outputs are identical,
each actually corresponds to GW signals with different
true parameters θ̂; it just so happens that they also have
different noise realizations n(t) that conspire so that the

sum s(t) is the same. In this case, θ̃i
BAYES(s) represents

the expectation of θi averaged over the ensemble of GW
signals. The principle disadvantage of the Bayes estima-
tor is computation cost, owing to the multi-dimensional
integrals in Eqs. (48) and (49). In Sec. 3.3, we describe
MCMC methods which efficiently approximate these in-
tegrals.

For large SNR it can be shown that the estimators
θ̃ML, θ̃MAP, and θ̃BAYES agree with one another (CF94).
Furthermore, in this limit (and as mentioned in Sec. 1.3)
Eq. (39) assumes a Gaussian form with respect to param-
eter errors, allowing us to estimate parameter variances
as the inverse of a Fisher matrix. However, as illustrated
in Sec. IVD of CF94, effects which scale nonlinearly with
1/SNR and prior information [represented by the distri-
bution p(0)(θ)] contribute significantly at low SNR. The
Gaussian approximation to Eq. (39) then tends to un-
derestimate measurement errors by missing tails or mul-
timodal structure in posterior distributions.

We emphasize that in this analysis we do not con-
sider systematic errors that occur both due to limita-
tions in our source model and due to gravitational lens-
ing effects. A framework for analyzing systematic er-
rors in GW measurements has recently been presented
by Cutler & Vallisneri (2007). An important follow-on
to this work will be to estimate systematic effects and
determine whether they significantly change our conclu-
sions.

3.2. Binary Selection and Priors

We now detail our method for generating a sample of
detectable GW-SHB events. The selection is central to
the use of GW-SHBs as standard sirens. In addition,
it sets physically motivated priors for the parameters in
our Bayesian framework. We employ a simple selection
procedure based on detection thresholds. An implicit
assumption of our method, detailed below, is that every
SHB event is a GW candidate potentially detectable by
a network of advanced GW interferometers.

We assume a constant comoving density (Peebles 1993,
Hogg 1999) of GW-SHB events, in a ΛCDM Universe
with H0 = 70.5 km/sec/Mpc, ΩΛ = 0.726, and Ωm =
0.2732 (Komatsu et al. 2009); our results are insensitive
to the precise details of the cosmology. We Monte-Carlo
distribute 106 binaries uniformly in volume, with ran-
dom sky positions and orientations, to redshift z = 1
(i.e., to roughly 6.6 Gpc). We compute the average SNR,
Eq. (45), for each binary at each detector, and use Eq.
(47) to compute the average total SNR for each network
we consider. Since we assume prior knowledge of the
merger time (by assumption that the inspiral is corre-
lated with a SHB), we set a threshold SNR for the to-
tal detector network, SNRtotal = 7.5 (see discussion in
DHHJ06). This is somewhat reduced from the thresh-
old we would set in the absence of a counterpart, since
prior knowledge of merger time and source position re-
duces the number of search templates we need by a factor
∼ 105 (Kochanek & Piran 1993, Owen 1996). By using
the average SNR to set our threshold, we introduce a
slight error into our analysis, since the true SNR will dif-
fer from the average. Some events which we identify as
above threshold could be moved below threshold due to
a measurement’s particular noise realization. However,
some sub-threshold events will likewise be moved above
threshold due to the instance of noise. The net effect is
not expected to be significant, and will be evaluated in
future work.

Our choice of threshold selects detectable GW-SHB
events for each detector network. To avoid confusion,
we use the term “total detected binaries” to mean bina-
ries which are detected by a network consisting of all five
detectors—both LIGO sites, Virgo, AIGO, and LCGT.
As one might imagine, this five detector network detects
more binaries than one with four detectors, which in
turn detects more than one of three detectors. Both the
Southern Hemisphere detector AIGO and the Japanese
detector LCGT substantially improve on the number of
binaries detected, as compared to the two LIGO detec-
tors plus Virgo. Assuming isotropy in SHB orientation
(i.e., that all binary orientations are equally likely given
an SHB), we find that a LIGO-LIGO-Virgo network de-
tects 50% of the total detected binaries; LIGO-LIGO-
Virgo-AIGO detects 74% of the total; and LIGO-LIGO-
Virgo-LCGT detects 72% of the total. Figure 2 shows
the location of detected binaries on the sky for LIGO
and Virgo (upper left panel); LIGO, Virgo, and AIGO
(upper right); LIGO, Virgo, and LCGT (lower left); and
all detectors (lower right). Notice that networks which
include LCGT tend to have rather uniform sky cover-
age, and that with AIGO, the quadrants with cos θ > 0,
φ > π and with cos θ < 0, φ < π are covered particularly
well.
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Fig. 2.— Detected NS-NS binaries for our various detector net-
works, as a function of sky position (cos θ, φ). The lower right
panel shows all of the binaries detected by a five-detector network
consisting of LIGO Hanford, LIGO Livingston, Virgo, AIGO, and
LCGT; upper left is LIGO plus Virgo, with 50% of the five-detector
events detected; upper right is LIGO, Virgo, and AIGO, with 74%
of events detected; and lower left is LIGO, Virgo, and LCGT, with
72% of events detected. Notice that detected binaries are more uni-
formly distributed on the sky in networks that include LCGT, and
that AIGO markedly improves the coverage in two of the sky’s
quadrants. Our coordinate φ is related to right ascension α by
φ = α−GMST, where GMST is Greenwich Mean Sidereal Time; θ
is related to declination δ by θ = π/2 − δ.

Our selection method implicitly sets a prior distribu-
tion on our parameters. For example, the thresholding
procedure results in a significant bias in detected events
toward face-on binaries, with L̂ ·n̂ → ±1. Figure 3 shows
the 2-D sample of detectable NS-NS binaries for the pa-
rameters (cos ι,DL). Since we use an unrealistic mass
distribution (1.4M⊙–1.4M⊙ NS-NS and 1.4M⊙–10M⊙

NS-BH binaries), instead of a more astrophysically real-
istic distribution, the implicit mass prior is uninterest-
ing. In addition, we assume uniform prior densities for
the parameter ψ between (0, π). Figure 4 presents the
average total SNR versus the true DL of our sample of
detectable NS-NS and NS-BH binaries for our “full” net-
work (LIGO, Virgo, AIGO, LCGT). Very few detected
binaries have SNR above 30 for NS-NS, and above 70 for
NS-BH. It is interesting to note the different detectable
ranges in luminosity distance between the two popula-
tions, with the NS-BH binaries detectable to over twice
the distance.

We are also interested in seeing the impact that prior
knowledge of SHB collimation may have on our abil-
ity to measure characteristics of these events. We note
that, to date, there exist only two tentative observations
which suggest that SHBs may have collimated emission
(Grupe et al. 2006, Burrows et al. 2006, Soderberg et al.
2006); we therefore present results for both moderate
collimation and for isotropic SHB emission. To obtain
a sample of beamed SHBs, we assume that the burst
emission is collimated along the orbital angular momen-
tum axis, where baryon loading is minimized. Follow-
ing DHHJ06, we use a distribution for cos ι ≡ v of
dP/dv ∝ exp[−(1 − v)2/2σ2

v], with σv = 0.05. This

corresponds to a beamed binary population with one
sigma (68%) of its distribution having an opening jet
angle within roughly 25◦. As Fig. 5 shows, we construct
a beamed subsample by selecting events from the total
sample of detected events such that its final distribution
in inclination angle follows dP/dv. Future joint measure-
ments of SHBs and GW-driven inspirals should enable us
to constrain the beaming angles by comparing the mea-
sured rates of these two populations.

3.3. Markov Chain Monte Carlo approach

As mentioned in Sec. 3.1, the principle disadvantage
of the Bayes estimators θ̃i

BAYES and Σij
BAYES is the high

computational cost of evaluating the multi-dimensional
integrals which define them, Eqs. (48) and (49). To
get around this difficulty, we use Markov Chain Monte
Carlo (MCMC) methods to explore the PDFs describ-
ing the seven parameters {Mz, µ,DL, cos ι, ψ, tc,Φc}.
MCMC methods are widely used in diverse astrophys-
ical applications, ranging from high precision cosmology
(e.g. Dunkley et al. 2009, Sievers et al. 2009) to extra-
solar planet studies (e.g. Ford 2005, Winn et al. 2007).
They have seen an increase in use in GW measure-
ment and parameter estimation studies in recent years,
both for the case of analysis by the space-based detec-
tor LISA (e.g., Stroeer et al. 2006, Wickham et al. 2006,
Cornish & Porter 2007, Porter & Cornish 2008), and for
analysis by a network of ground-based detectors at initial
sensitivity (e.g., Röver et al. 2007, van der Sluys et al.
2008). In this section, we briefly introduce MCMC meth-
ods, focusing in particular on the Metropolis-Hastings
algorithm (Metropolis et al. 1953, Hastings 1970). Our
goal is to describe the workings of our algorithm, rather
than to review MCMC methods generally; we defer de-
tailed proofs to the literature on this subject (e.g. Neal
1993, Gilks et al. 1996, MacKay 2003). Our discussion
owes much to the helpful background provided by Sec.
III of Christensen et al. (2004).

As the “Monte Carlo” part of its name implies, the
central idea of MCMC is to generate a random sequence
of parameter states that sample the posterior distribu-
tion, p(θ|s). Let the nth sample in the sequence be θ

(n).
Then, if one draws a total of N random samples, Eqs.
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Fig. 3.— The 2-D marginalized prior distribution in luminosity
distance, DL, and cosine inclination, cos ι. Each point represents a
detected NS-NS binary for a network comprising all five detectors.
Notice the bias toward detecting face-on binaries (cos ι → ±1);
these are detected to much larger distances than edge-on (cos ι →
0).
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Fig. 4.— Average SNR versus luminosity distance of the total
detected NS-NS and NS-BH binaries using a network of both LIGO
detectors, Virgo, AIGO, and LCGT. The left panel shows the total
detected NS-NS binaries (one point with SNR above 100 is omit-
ted); the right panel shows the total detected NS-BH binaries (one
point with SNR above 350 is omitted). Notice the different scales
of both axes between the two panels. In particular, NS-BH binaries
are detected to more than twice the distance.

(48) and (49) can be approximated as simple sample av-
erages:

θ̃i
BAYES ≃ 1

N

N
∑

n=1

(θi)(n) , (50)

Σij
BAYES ≃ 1

N

N
∑

n=1

(

θ̃i
BAYES − (θi)(n)

)(

θ̃j
BAYES − (θj)(n)

)

.

(51)
The key to making this technique work is drawing
a sequence that represents the posterior PDF. The
Metropolis-Hastings algorithm, which we now briefly de-
scribe, ensures that, at least asymptotically, the prob-
ability of selecting a sample θ

(n) is determined by the
posterior distribution p(θ|s).

Suppose we are currently at step n in our chain of
sequences; the zeroth step, θ

(0), can be selected arbi-
trarily. We choose a candidate for the next sequence in
our chain, θ

′, from the proposal distribution Q(θ′; θ(n)).
(Note that our choice for this function can have a large
impact on how effectively the chain we build converges
to a representation of the posterior PDF; we describe our
particular choice later in this section.) We then accept
(or reject) θ

′ by computing the acceptance probability

a(θ′; θ(n)) =
P (θ′)Q(θ(n); θ′)

P (θ(n))Q(θ′; θ(n))
. (52)

where P (θ) is shorthand for the posterior PDF p(θ|s).
We also generate a uniform random deviate u ∈ [0, 1].
If u ≤ a(θ′; θn), then we accept this step, putting
θ

(n+1) = θ
′. If u > a(θ′; θn), then this step is re-

jected, and we put θ
(n+1) = θ

(n). Note that sample
θ

(n+1) only depends upon the previous sample, θ
(n).

This is the defining condition of a Markov sequence, and
explains the “Markov Chain” part of MCMC. The lit-
erature on this subject demonstrates that the Markov
chain so constructed explores the full range of the sam-
ple space spanned by p(θ | s). We point the reader to
Christensen et al. (2004) for a pedagogical review, and
to Neal (1993) and Gilks et al. (1996) for much more in-
depth discussion.

For completeness, we list several standard concerns of
MCMC methods. First, as already mentioned in passing,

this algorithm’s performance depends on the choice of
proposal density Q(θ′; θ). The efficiency of the method
increases when the proposal distribution resembles the
underlying probability distributions, particularly when
treating strongly degenerate parameters. Second, a cer-
tain so-called “burn-in” period is needed in order for a
chain to equilibriate to its invariant distribution. This
period allows the chain to explore all regions of high prob-
ability in the posterior PDF; it is especially important if
the chain begins in some parameter region of low proba-
bility. Finally, a chain will of course necessarily be finite
in any practical computation. Understanding the con-
vergence properties of finite chains is central to ensuring
that the samples we generate are sufficiently large, and
are effectively independent. Some errors enter because
of correlations between successive elements of the chain
and the shot noise. We are especially concerned with es-
tablishing that the MCMC chain has fully sampled the
distribution, and is not “stuck” on some parameter island
of high probability.

The MCMC algorithm which we use is based
on a generic version of CosmoMC8, described in
Lewis & Bridle (2002). We state here only the main fea-
tures of our code; further details of our MCMC method
are discussed at length in Lewis & Bridle (2002). As
Eq. (52) illustrates, computing a(θ′; θ(n)) requires evalu-
ating the posterior PDF p(θ | s) for any sample θ

(n). This
in turn requires that we calculate both the prior distri-
bution p(0)(θ), and the likelihood function LTOT(s |θ)
[cf. Eq. (40)] for θ = θ

(n). We now briefly emphasize key
aspects of our approach.

As already mentioned, the total likelihood LTOT(s |θ)
depends upon the individual likelihoods at each detec-
tor, La(sa |θ). By Eq. (41), we see that each La(sa |θ)
is a function of the detector’s output sa(t), the predicted
waveform ha(θ(n)) at θ

(n), and the noise spectral density
Sn(f). For a given source (i.e., a given true parameteri-

zation θ̂), we need only compute sa(t) once [cf. Eq. (34)].
When computing steps in our chain, we must then com-

Fig. 5.— Distributions in inclination, cos ι, for the subsam-
ple of NS-NS binaries for which we assume SHB collimation
(dashed line) and for the full sample of total detected binaries
with isotropic distribution in inclination (solid line). The beamed
subsample of binaries have a distribution in cos ι ≡ v given by
dP/dv ∝ exp[−(1 − v)2/2σ2

v ], with σv = 0.05.

8 See http://cosmologist.info/cosmomc/

http://cosmologist.info/cosmomc/
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pute the model signal ha(θ(n)) at each sample θ
(n).

Priors play a crucial role in our MCMC approach. We
take the prior distributions in chirp mass Mz, reduced
mass µz, polarization angle ψ, coalescence time tc, and
coalescence phase Φc to be flat over the region of sample
space where the binary is detectable according to our
selection procedure. More specifically, we choose

• p(0)(Mz) = constant over the range [1M⊙, 2M⊙]
for NS-NS; and over the range [2.5M⊙, 4.9M⊙]
for NS-BH. (Note that the true chirp masses in
the binaries’ rest frames are 1.2M⊙ for NS-NS and
3.0M⊙ for NS-BH.)

• p(0)(µz) = constant over the range [0.3M⊙, 2M⊙]
for NS-NS; and over the range [0.5M⊙, 3.5M⊙]
for NS-BH. (Note that the true reduced masses in
the binaries’ rest frames are 0.7M⊙ for NS-NS and
1.2M⊙ for NS-BH.)

• p(0)(ψ) = constant over the range [0, π].

• p(0)(tc) = constant over the range
[−100 sec, 100 sec]. Since we assume that the
coalescence time is close to the time of the SHB
event, tc is essentially the time offset between the
system’s final GWs and its SHB photons. We find
that our choice of prior here is almost irrelevant,
as long as the prior is flat and includes the true
value. No matter how broad we choose the prior
in tc, our posterior PDF ends up very narrowly
peaked around t̂c.

• p(0)(Φc) = constant over the range [0, 2π].

Given our assumed constant comoving density of SHBs,
the prior distribution for luminosity distance scales as
comoving volume over the range [0, 2 Gpc] for NS-NS
binaries, and over the range [0, 5 Gpc] for NS-BH bina-
ries. For our sample with isotropic inclination distribu-
tion, we put p(0)(cos ι) = constant over the range [−1, 1].
For our sample that assumes SHB collimation, our prior
in cos ι ≡ v is the same as the one that we used in our
selection procedure discussed in the previous subsection:

dp(0)

dv
(v) ∝ e−(1−v)2/2σ2

v , (53)

with σv = 0.05.
We then map out full distributions for each of our seven

parameters, assessing the mean values [Eq. (48)] and the
standard deviations [Eq. (49)]. We generate four chains
which run in parallel on the CITA “Sunnyvale” Cluster.
Each chain runs for a maximum of 107 steps; we find
that the mean and median number of steps are ∼ 105

and ∼ 104, respectively. Each evaluation of the likeli-
hood function takes ∼ 0.3 seconds. We use the first 30%
of a chain’s sample states for “burn in,” and thus dis-
card that data. When generating our Markov chains, we
use an initial Gaussian proposal distribution with a stan-
dard deviation similar to that expected for the posterior
probability density:

Q(θ′; θ
(n)

) =
1

(2πσT )N/2
exp[−θ

2/2σ2
T ], (54)

where σT is the width of the trial Gaussian distribution
and N is the number of dimensions of our parameter set
(in our case, N = 7). However, in the case of parame-
ters such as DL and cos ι that we expect to be strongly
correlated, we use a much smaller proposal standard de-
viation. The proposal distribution is then updated using
the covariance matrix of the last half of the samples.

Our chains start at random offset parameter values,
drawn from Gaussians centered on the true parameter
value. We assess convergence by testing whether the mul-
tiple chains have produced consistent parameter distribu-
tions. Following standard practice, we use the Gelman-
Rubin convergence criterion, defining a sequence as “con-
verged” if the statistic R < 1.1 on the last half of our
samples; see Gelman & Rubin (1992) for more details.
We use convergence as our stopping criterion.

Each simulation for every binary runs for an hour to
forty-eight hours; the mean and median runtime are eight
and three hours, respectively. CosmoMC features such as
temperature annealing and sophisticated sampling meth-
ods have not been required in our simulations.

3.4. The “averaged” posterior PDF

Central to the procedure outlined above is the use of
the datastream s = h(θ) + n which enters the likeli-
hood function LTOT(s|θ). The resulting posterior PDF,
and the parameters one infers, thus depend on the noise
n which one uses, either via the noise in a particular
measurement or (as in our case) by simulation (drawing
randomly from the noise’s PDF). In some cases, one will
want to evaluate statistics that are in a well-defined sense
“typical” given the average noise properties, rather than
depending on a particular noise instance. Such averaging
is appropriate, for example, when forecasting how well an
instrument should be able to measure the properties of
a source or process. As we discuss in more detail in the
following Section, we have also found it is necessary to
average when trying to compare our MCMC code’s out-
put with previously published work.

As explained in detail below, the averaged posterior
PDF takes a remarkably simple form: It is just the
“usual” posterior PDF, Eq. (39) with the noise n set
to zero. We emphasize that this does not mean that one
ignores noise when constructing the averaged PDF. For
example, one still meaningfully relates the amplitude of
the signal to the amplitude of typical rms noise in a detec-
tor by the average SNR, Eq. (45). As such, the averaged
statistics will show an improvement in measurement ac-
curacy as the SNR is increased.

To develop a useful notion of averaged posterior PDF,
consider the hypothetical (and physically unrealistic)
case in which we measure a signal using M different noise
realizations for the same event. The joint posterior PDF
for these measurements is

pjoint(θ|s1, s2, . . . sM ) =
M
∏

i=1

p(θ|si) . (55)

Let us define the “average” PDF as the geometric mean
of the PDFs which describe these measurements:

pave(θ|s) ≡ pjoint(θ|s1, s2, . . . sM )1/M . (56)
Expanding this definition, we find

pave(θ|s)≡
M
∏

i=1

[p(θ | si)]
1/M
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=
M
∏

i=1

[

Ni p
(0)(θ)LTOT(si |θ)

]1/M

=N p(0)(θ)

M
∏

i=1

[LTOT(si |θ)]
1/M

, (57)

where the subscript i denotes the ith noise realization in
our set of M observations. The multi-observation likeli-
hood can in turn be expanded as

M
∏

i=1

[LTOT(si|θ)]
1/M

=
∏

a

M
∏

i=1

[La(sa,i |θ)]
1/M

=
∏

a

M
∏

i=1

e−
(

ha(θ)−sa,i

∣

∣ha(θ)−sa,i

)

/2M

=
∏

a

e−
(

ha(θ)−ha(θ̂)
∣

∣ha(θ)−ha(θ̂)
)

/2

×
M
∏

i=1

exp

[

1

M

(

na,i

∣

∣

∣

∣

ha(θ) − ha(θ̂)

)]

×
M
∏

i=1

exp

[

− 1

2M

(

na,i

∣

∣

∣

∣

na,i

)]

. (58)

By taking M to be large, the products on the last two
lines of Eq. (58) can be evaluated as follows:

M
∏

i=1

exp

[

1

M

(

na,i

∣

∣

∣

∣

ha(θ) − ha(θ̂)

)]

= exp

[

1

M

M
∑

i=1

(

na,i

∣

∣

∣

∣

ha(θ) − ha(θ̂)

)

]

≃ exp

[〈(

na

∣

∣

∣

∣

ha(θ) − ha(θ̂)

)〉]

= 1 . (59)

Here, 〈. . .〉 denotes an ensemble average over noise real-
izations (cf. Sec. 3.1), and we have used the fact that our
noise has zero mean. Similarly, we find

M
∏

i=1

exp

[

− 1

2M

(

na,i

∣

∣

∣

∣

na,i

)]

= exp

[

− 1

2M

M
∑

i=1

(

na,i

∣

∣

∣

∣

na,i

)

]

≃ exp

[

−1

2

〈(

na

∣

∣

∣

∣

na

)〉]

= e−1 . (60)

The final equality uses 〈(na|na)〉 = 2, which can be
proved using using the noise properties (35), (36), and
(37).

Putting all this together, we finally find

pave(θ|s) = Np0(θ)
∏

a

e−
(

ha(θ)−ha(θ̂)
∣

∣ha(θ)−ha(θ̂)
)

/2 ,

(61)
where we have absorbed the factor e−1 into the normal-
ization N . The posterior PDF, averaged over noise real-
izations, is simply obtained by evaluating Eq. (39) with
the noise n set to zero.

4. RESULTS I: VALIDATION AND TESTING

We now validate and test our MCMC code against pre-
viously published results from CF94. In particular, we
examine the posterior PDF for a particular NS-NS binary
which was studied in detail in CF94. We also explore
the dependence of distance measurement accuracies on
the detector network and luminosity distance, focusing
on the strong degeneracy that exists between cos ι and
DL.

4.1. Comparison with CF94

Validation of our MCMC results requires comparing
to work which goes beyond the Gaussian Fisher matrix
approximation to the likelihood function. In Section IVD
of CF94, Cutler & Flanagan investigate dominant effects
that are non-linear in 1/SNR, and consequently, in the
variable 1/DL. Their work shows that including such
effects has a significant impact on the predicted distance
measurement accuracies, particularly in the limit of low
SNR. In particular, they find that Fisher-based estimates
understate distance measurement errors for a network
comprising the two LIGO detectors and Virgo.

Because they go beyond a Fisher matrix analysis, the
results of CF94 are a useful comparison to our MCMC
results. Their paper is also a useful touchstone in that
they take a binary’s source position to be known. It
should be noted that their motivation for this assump-
tion is different from ours: while we assume that the
inspiral is associated with an SHB which determines the
sky position, they argue that GWs on their own deter-
mine sky position precisely enough to break correlations
between position and DL. This argument is based on
the “Marković approximation” (Marković 1993), which
argues that timing information between different detec-
tors fixes the sky position to sufficient accuracy.

Our approach is sufficently different from CF94 that
we do not expect perfect agreement between our re-
sults. The most important difference is that we directly
map out the posterior PDF and compute sample aver-
ages using Eqs. (48) and (49), for all of our parameters
{Mz, µz, DL, cos ι, ψ, tc,Φc}. In contrast, CF94 estimate
measurement errors for only one parameter, DL, using
an approximate method based on an analytical Bayesian
derivation of the marginalized PDF for DL. Specifically,
Cutler & Flanagan expand the exponential factor in Eq.
(39) beyond second order in terms of some “best-fit”
maxiumum likelihood parameters. Their approximation
treats strong correlations between the parameters DL

and cos ι that are non-linear in 1/SNR. However, other
correlations between DL and (ψ, φc) are only considered
up to linear order. They obtain an analytical expression
for the posterior PDF of the variables DL and cos ι in
terms of their “best-fit” maximum-likelihood values D̃L

and cos ι̃ [see Eq. (4.57) of CF94]. The marginalized 1-D
posterior PDFs for DL are then computed by numeri-
cally integrating over the parameter cos ι. We use the
term 1-D marginalized PDF in parameter θi to refer to
the distribution

pmarg(θi|s) =

∫

. . .

∫

p(θ|s)dθ1 . . . dθi−1 dθi+1 . . . dθN

(62)
where p(θ|s) is the posterior PDF given by Eq. (39) and
N is the number of dimensions of our parameter set (in
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our case, N = 7).
In addition to this rather significant difference in our

techniques, there are several relatively minor differences
which also affect our comparison:

• We use the restricted 2PN waveform; CF94 use the
leading “Newtonian, quadrupole” waveform (cf.
the waveform we use for pedagogical purposes in
Sec. 1.2). Since the distance is encoded in the
waveform’s amplitude, we do not expect that our
use of a higher-order phase function will have a
large impact. However, to avoid any easily cir-
cumvented mismatch, we adopt the Newtonian-
quadrupole waveform for the purpose of our com-
parisons. Note that this waveform does not depend
on the reduced mass µ; hence, for the purpose of
this comparison only, our parameter space is re-
duced to 6 dimensions.

• We use the projected advanced sensitivity noise
curve shown in Fig. (1); CF94 use an analytical
form [their Eq. (2.1)9] based on the best-guess for
what advanced sensitivity would achieve at the
time of their analysis. Compared to the modern
projected sensitivity, their curve underestimates
the noise at middle frequencies (∼ 40−150 Hz) and
overestimates it at high frequencies (& 200 Hz).
We likewise adopt their noise curve for our com-
parison. Because of these differences, CF94 rather
seriously overestimates the SNR for NS-NS inspi-
ral. Using their noise curve, the average SNR for
the binary presented in their Fig. 10 is 12.410; using
our up-to-date model for advanced LIGO, it is 5.8.
As such, the reader should view the numbers in this
section of our analysis as useful only for validation
purposes.

• The two analyses use somewhat different prior dis-
tributions. As extensively discussed in Sec. 3.3, we
set uniform priors on the chirp mass Mz, on the
time tc and phase Φc at coalescence, and on the
polarization phase ψ. For the purpose of this com-
parison, we will assume isotropic emission, so we
also set a flat prior on the inclination cos ι. We as-
sume our sources are uniformly distributed in con-
stant comoving volume. However, we set a detec-
tion threshold which depends on the total network
SNR, which effectively sets a joint prior on source
inclination and distance. CF94 use a prior distri-
bution only for the parameter set {DL, cos ι, ψ,Φc}
that is flat in polarization phase, coalescence phase,
and inclination. [This smaller prior set follows from
their use of the Marković approximation, which
also argues that correlations between intrinsic and
extrinsic parameters can be subsumed into cor-
relations with the single intrinsic parameter Φc.]
They assume a prior that is uniform in volume,
but that cuts off the distribution at a distance
Dmax ≃ 6.5 Gpc.

9 Note that it is missing an overall factor of 1/5 (E. E. Flanagan,
private communication).

10 CF94 actually report the SNR to be 12.8. The slight discrep-
ancy is due to rounding errors in the parameter r0 in their Eq.
(4.28). Adjusting to their preferred value (rather than computing
r0 directly) gives perfect agreement.

Our goal here is to reproduce the 1-D marginalized
posterior PDF in DL for the binary shown in Fig. 10 of
CF94. For brevity, we refer to this system as the “CF
binary.” Each NS in the CF binary has mz = 1.4M⊙; it
has a sky position (θ, φ) = (50◦, 276◦); and the detector
network comprises LIGO Hanford, LIGO Livingston and
Virgo. CF94 report the “best-fit” maximum-likelihood
values (D̃L, cos ι̃, Ψ̃) to be (432 Mpc, 0.31, 101.5◦), where
Ψ = ψ + ∆ψ(n), and where ∆ψ(n) depends on the pre-
ferred basis of e× and e× set by the detector network
[see Eqs. (4.23)–(4.25) of CF9411]. In their Bayesian
framework, the GW signal has been generated and an
experimenter has no access to the true parameters; they
thus do not present the parameters’ true values. In order
to compare our distribution with theirs, we assume that
θ̂ = θ̃ML for the purpose of computing the likelihood
function L(θ|s). This is a reasonable assumption in the
limit in which priors are taken to be uniform over the rel-
evant parameter space. As already mentioned, for this
comparison we use their advanced detector noise curve
and the Newtonian-quadrupole waveform. Finally, we in-
terpret the solid curve in Fig. 10 of CF94 as the marginal-
ized 1-D posterior PDF in DL for an average of posterior
PDFs of parameters (given an ensemble of many noisy
observations for a particular event). We compute the av-
erage PDF as described in Sec. 3.4, and then marginalize
over all parameters except DL, as in Eq. (62).

The left hand panels of Fig. 6 show the resulting 1-
D marginalized PDF in DL and cos ι . Notice that its
shape has a broad structure not dissimilar to the solid
curve shown in Fig. 10 of CF94: The distribution has
a small bump near DL ≈ 460 Mpc, a main peak at
DL ≈ 700 Mpc, and extends out to roughly 1 Giga-
parsec. Because of the broad shape, the Bayesian mean
(D̃L,BAYES = 694 Mpc) is significantly different from

both the true value (D̂L = 432 Mpc in our calculation)

and from the maximum likelihood (D̃L,ML = 495 Mpc).
Note that, thanks to the marginalization, the peak of this
curve does not coincide with the maximum likelihood.
(Interestingly, we find a shape much closer to CF94 Fig.
10 if we use a prior in which binaries are uniformly dis-
tributed in distance, rather than uniformly distributed
in volume.)

We further determine the 2-D marginalized posterior
PDFs in DL and cos ι for the CF binary. Fig. 6 illus-
trates directly the very strong degeneracy between these
parameters, as expected from the form of Eqs. (7) and
(8), as well as from earlier works (e.g., Marković 1993,
CF94). It’s worth noting that, as CF94 comment, the bi-
nary they chose is measured particularly poorly. This is
largely due to the fact that one polarization is measured
by the network far better than the other, so that the
DL–cos ι degeneracy remains relatively unbroken. This
degeneracy is responsible for the characteristic tail to
large DL we find in the 1-D marginalized posterior PDF
in DL, p(DL|s), which we investigate further in the fol-
lowing section.

11 Note that Eq. (4.25) of CF94 should read tan(4∆ψ) =

2Θ+×/(Θ++ − Θ××). In addition, Ψ̃ = 56.5◦ should read

Ψ̃ = 101.5◦ under the caption of Fig. 10. (We have changed nota-
tion from ψ̄ in CF94 to Ψ to avoid multiple accents on the best fit

value.) We thank Éanna Flanagan for confirming these corrections.
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Fig. 6.— The 1-D and 2-D marginalized posterior PDFs for DL

and cos ι, averaged (as described in Sec. 3.4) over noise ensembles,
for the “CF binary.” The purpose of this calculation is to repro-
duce, as closely as possible, the non-Gaussian limit summarized in
Fig. 10 of CF94. Top left-hand panel shows the 1-D marginalized

posterior PDF in DL (the true parameter value D̂L = 432Mpc is
marked with a solid black line); bottom left-hand panel illustrates
the 1-D marginalized posterior PDF in cos ι (where the true value
cos ι̂ = 0.31 is indicated with the solid black line). The right-hand
panel shows the 2-D marginalized posterior PDF for the parame-

ters DL and cos ι, where the true values D̂L and cos ι̂ are marked
with a cross. The contours around the dark and light blue areas
indicate the 68 and 95% interval levels, respectively. Notice that
the true values lie within the parameter interval defined by the
contours of the 68% region. The Bayesian mean and rms measure-
ment accuracies are (694.4 Mpc, 0.70) and (162 Mpc, 0.229) for
(DL, cos ι), respectively.

4.2. Test 1: Varying luminosity distance and number of
detectors

We now examine how well we measure DL as a func-
tion of both the distance to the CF binary and the
properties of the GW detector network. Figures 7
and 8 show the 1-D and 2-D marginalized posterior
PDFs in DL and cos ι for the CF binary at D̂L =
{100, 200, 300, 400, 500, 600}Mpc. For all these cases we
keep the binary’s sky position, inclination, and polariza-
tion angle fixed as in Sec. 4.1. The average SNRs we

find for these six cases are (going from D̂L = 100 Mpc
to 600 Mpc) 53.6, 26.8, 17.9, 13.4, 10.7, and 8.9 (scaling,

as expected, as 1/D̂L). Interestingly, the marginalized
PDFs for both distance and cos ι shown in Figs. 7 and 8
have fairly Gaussian shapes for D̂L = 100 and 200 Mpc,
but have very non-Gaussian shapes for D̂L ≥ 300 Mpc.
This can be considered “anecdotal” evidence that the
Gaussian approximation for the posterior PDF breaks
down at SNR . 25 or so, at least for this case. For lower
SNR, the degeneracy between cos ι and DL becomes so
severe that the 1-D errors on these parameters become
quite large.

Next, we consider how measurement accuracy depends
on properties of the GW detector network. Figure 9
shows the 1-D marginalized posterior PDFs in DL for the
CF binary with different networks. All “true” parame-
ters are chosen exactly as described in Sec. 4.1. Adding
detectors to the network does not substantially increase
the total SNR; we increase the average total SNR from

12.4 to 14.6 (adding only AIGO), to 12.4 (adding only
LCGT; its contribution is so small that the change is
insignificant to the stated precision), or to 14.7 (adding
both AIGO and LCGT). This change is not enough to
counter the DL−cos ι degeneracy. While this degeneracy
remains effective, the distance errors remain large and, in
this case, biased. We remark also that the CF binary has
a relatively small SNR for LCGT and Virgo: the average
SNR in our detectors is 8.23 for LIGO-Hanford, 8.84 for
LIGO-Livingston, 2.91 for Virgo, 8.71 for AIGO, and 1.1
for LCGT. This pathology of the CF binary is an exam-
ple of a fairly general trend that we see. As we show in
Sec. 5, even considering general binaries, randomly dis-
tributed on the sky and randomly oriented, we often find
that SNR is quite low in one or more detectors.

4.3. Test 2: Varying source inclination

One of the prime results seen in our analysis of the CF
binary is (as expected) a strong degeneracy between cos ι
and DL. As Fig. 6 shows, this results in a tail to large
values of DL in the 1-D marginalized posterior PDF in
DL, p(DL|s), with a Bayes mean DL for the CF binary

of D̃L = 694 Mpc (compared to the true CF value of
432 Mpc). Such a bias is naturally a great concern for
using these sources as standard sirens, as well as GW
measurements in general.

The CF binary has cos ι̂ = 0.31, meaning that it is
nearly edge-on to the line of sight. Hypothesizing that
the large tails may be due to its nearly edge-on nature,
we consider a complementary binary that is nearly face
on: We fix all of the parameters to those used for the
CF binary, except for the inclination, which we take to
be cos ι̂ = 0.98. We call this test case the “face-on”
CF binary. By changing the inclination to a more nearly
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Fig. 7.— 1-D and 2-D marginalized PDFs for DL and cos ι,
averaged (as described in Sec. 3.4) over noise ensembles for the

“CF binary” at different values of true luminosity distance D̂L:
[100 Mpc, 200 Mpc, 300 Mpc] (top to bottom). The true values
are marked with the solid black line, or a black cross in the 2-
D case. The Bayesian means and rms measurement errors of the
luminosity distance are [101.0 Mpc, 212.1 Mpc, 411.2 Mpc] and [3.6
Mpc, 21.4 Mpc, 110.0 Mpc], respectively. The corresponding Bayes
mean and rms measurement errors for cos ι are [0.317, 0.357, 0.562]
and [0.033, 0.089, 0.247]. The dark and light contours in the 2-D
marginalized PDF plots indicate the 68 and 95% interval levels,
respectively. Notice that the true value always lies within the 68%
contour region of the 2-D marginalized area at these luminosity
distances.
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Fig. 8.— The 1-D and 2-D marginalized PDFs for DL and cos ι,
averaged (as described in Sec. 3.4) over noise ensembles for the

“CF binary” at different values of the true luminosity distance D̂L:
[400 Mpc, 500 Mpc, 600 Mpc] (top to bottom). The true values are
marked with the solid black line, or a black cross in the 2-D case.
The Bayesian means and rms measurement errors of the luminosity
distance are [627.17 Mpc, 857.3 Mpc, 1068 Mpc] and [148.8 Mpc,
198.1 Mpc, 262.2 Mpc], respectively. The Bayes means and rms
measurement errors for cos ι are [0.686, 0.745, 0.746] and [0.237,
0.209, 0.218]. The dark and light contours in the 2-D marginalized
PDF plots indicate the 68 and 95% interval levels, respectively.
Notice that the true value lies within the 68% contour region of
the 2-D marginalized area at a luminosity distance of 400 Mpc;
for larger luminosity distances, the true value lies within the 95%
contour region.

face-on situation, we substantially augment the measured
SNR; the average SNR for the face-on CF binary mea-
sured by the LIGO/Virgo base network is 24.3 (as com-
pared to 12.4 for the CF binary). We thus expect some
improvement in the posterior PDF simply owing to the
stronger signal.

Figure 10 shows the 1-D and 2-D marginalized poste-
rior PDFs in DL and cos ι. As we might have guessed,
these distributions are complementary to those we found
for the CF binary. In particular, we find that the peak of
the 1-D marginalized posterior PDF in DL is shifted to
lower values in DL, and the Bayes mean is much closer to
the true value: D̃L = 376.3 Mpc. Notice that the shape
of the 1-D marginalized posterior PDF in cos ι is abruptly
cut off by the upper bound of the physical prior cos ι ≤ 1.
The Bayes mean for the inclination is cos ι̃ = 0.83.

Just as we varied distance and detector network for the
CF binary, we now do so for the face-on CF binary. Fig-
ures 11 and 12 show the 1-D marginalized posterior PDFs
in DL and cos ι for the face-on CF binary for D̂L = {100,
200, 300, 400, 500, 600}Mpc. The SNR in these cases
is 105.0, 52.5, 34.0, 26.2, 20.1, and 17.5, respectively.
Notice that the 1-D marginalized PDFs for cos ι and DL

remain highly non-Gaussian, despite the high SNR. Once
again, this is due to the hard cutoff in the PDF for cos ι.
As long as a significant fraction of the PDF is excluded
by the cutoff (i.e. as long as 1−cos ι .

√

Σcos ι cos ι
BAYES ), then

the 1-D marginalized 1-D PDFs for distance and inclina-
tion will be asymmetric and non-Gaussian. This implies
that the Gaussian approximation and the Fisher matrix
method will be unreliable. Similarly, Fig. 13 shows the 1-

D marginalized posterior PDFs in DL for the CF binary
with different networks. Our results hence confirm this
predicted degeneracy for face-on binaries irrespective of
SNR.

4.4. Discussion of validation and tests

The main result from our validation tests is that the
posterior PDFs we find have rather long tails, with strong
correlations between cos ι and DL. Except for cases with
very high SNR, the 1-D marginalized posterior PDF in
cos ι is rather broad. The Bayes mean for cos ι thus
typically suggests that a binary is at an intermediate
inclination—underestimating cos ι for nearly face-on bi-
naries, and overestimating it for nearly edge-on binaries.
Thanks to the strong cos ι–DL degeneracy, we thus in-
terpret (at fixed SNR) a nearly face-on binary as be-
ing closer than its true value, while interpreting a nearly
edge-on binary as farther than its true value.

A bias in the measurement of DL may be worrying for
plans to use GW measurements as standard sirens. How-
ever, thus far we have only considered the measurement
of single events. The joint constraints from measuring
an ensemble of events can significantly reduce the bias,
and improve the overall measurement. To see what hap-
pens when many events are observed, we consider the
(physically unrealistic) case in which 80 NS-NS binaries
are randomly placed on the sky with random orienta-
tion, but at fixed luminosity distance, D̂L = 432 Mpc,
and measure these using our LIGO/Virgo baseline net-
work. As we select binaries at a fixed distance on the
sky, we now assume a uniform distance prior. We assem-
ble the joint 1-D posterior likelihood for this particular
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Fig. 9.— The 1-D marginalized PDF for DL, averaged (as de-
scribed in Sec. 3.4) over noise ensembles for the “CF binary” for

different detector networks. The true values of D̂L are marked
with the solid black line. The lower right panel gives the case for
the CF binary detected by LIGO, Virgo, AIGO, and LCGT. For
this case, the Bayes mean and rms measurement error in DL are
[660.7 Mpc, 153.1 Mpc], respectively. The upper left is LIGO plus
Virgo with [694.4 Mpc, 162.0 Mpc]; upper right is LIGO, Virgo,
and AIGO, with [673.7 Mpc, 152.7 Mpc]; and lower left is LIGO,
Virgo, and LCGT, with [706.1 Mpc, 164.6 Mpc]. Notice that the
addition of detectors has little impact on improving measurements
in DL for this binary.
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Fig. 10.— The 1-D and 2-D marginalized PDFs for DL and
cos ι, averaged (as described in Sec. 3.4) over noise ensembles for
the “face-on” CF binary. The Bayesian mean and rms measure-
ment accuracies are (376.3 Mpc, 0.83) and (51.3 Mpc, 0.12) for
(DL, cos ι), respectively. The top left-hand panel shows the 1-
D marginalized posterior PDF in DL (the true parameter value

D̂L = 432 Mpc is marked with a solid black line); the bottom left-
hand panel illustrates the 1-D marginalized posterior PDF in cos ι
(where the true value cos ι̂ = 0.98 is indicated with the solid black
line); and the right-hand panel demonstrates the 2-D marginalized
posterior PDF for parameters DL and cos ι, where the true values

D̂L and cos ι̂ are marked with a cross. The dark and light contours
indicate the 68 and 95% interval levels, respectively. Notice that
the true values lie within the parameter interval defined by the
contours of the 68% region.
distribution of events:

pjoint(DL) =

80
∏

i=1

pave(DL|si) , (63)

where pave(DL|si) is the 1-D marginalized posterior PDF
constructed from pave(θ|si) for measurement i; the lat-
ter quantity having been averaged with respect to noise
as discussed in Sec. 3.4. Figure 14 shows the joint 1-D
marginalized posterior PDF for DL. Notice that the bias
is eliminated; in essence, averaging over many positions
and orientations washes out the bias.

Though instructive, this limit is idealized. Real events
will be distributed in distance, and a sample of eighty
events is not expected in the near future. In the following
section, we survey how well distances can be determined
for realistic ensembles of GW-SHB events.

5. RESULTS II: SURVEY OF STANDARD SIRENS

We now examine how well various detector networks
can measure an ensemble of canonical GW-SHB events.
We consider NS-NS systems, with each neutron star hav-
ing massmNS

z = (1+z)1.4M⊙; and NS-BH systems, with
masses mNS

z = (1 + z)1.4M⊙ and mBH
z = (1 + z)10M⊙.

We examine measurement by the four detector networks
we have discussed (LIGO and Virgo; LIGO, Virgo, and
AIGO; LIGO, Virgo, and LCGT; and LIGO, Virgo,
AIGO, and LCGT). Finally, we consider both isotropic
orientation and a beamed subsample, imagining that the
gamma-rays from SHBs are beamed along the poles of
the binary.

For this study we randomly choose events from our
sample of detected NS-NS and NS-BH binaries (where

the selection is detailed in Sec. 3.2). A rough estimate
of the distance to which we can detect these events can
be derived as follows. We set a total detector network
threshold of 7.5, implying a threshold per detector of
7/

√
5 = 3.4 for a five detector network. Further averag-

ing Eq. (45) over all sky positions and orientations yields
(DHHJ06)
(

S

N

)

a, sky−ave

=
8

5

√

5

96

c

DL

1

π2/3

(

GMz

c3

)5/6

×
∫ fISCO

flow

f−7/3

Sh(f)
df , (64)

where the subscript “sky-ave” denotes that is the noise-
averaged SNR for detector a, averaged over all sky po-
sitions and orientations. For a single detector threshold
of 3.4, we find that a five detector network has an aver-
age range of about 600 Mpc for NS-NS events, and about
1200 Mpc for NS-BH events. If SHBs are associated with
face-on binary inspiral, these numbers are increased by
a factor

√

5/4 ≃ 1.12 (DHHJ06).
If a constant comoving rate of 10 SHBs Gpc−3 yr−1

is assumed (Nakar et al. 2006), we expect approximately
6 GW-SHB events per year for isotropically orientated
NS-NS binary progenitors, and 44 SHBs per year for
isotropically orientated NS-BH binary progenitors. If
these events are face-on, the factor 1.12 increases the ex-
pected rate to 8 NS-NS and 57 NS-BH GW-SHB events
per year. We stress that this is a rough approximation,
since there are large uncertainties in the SHB event rate
and redshift distribution.

In all cases we build our results by constructing the
posterior distribution for an event given a unique noise
realisation at each detector. We keep the noise realiza-
tion, in a given detector and for a specific binary, con-
stant as we add other detectors. This allows us to make
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Fig. 11.— The 1-D marginalized PDFs forDL and cos ι, averaged
(as described in Sec. 3.4) over noise ensembles, for the face-on

CF binary at different values of the true luminosity distance D̂L:
[100 Mpc, 200 Mpc, 300 Mpc] (top to bottom). These values are
marked with the solid black line. The Bayesian means and rms
measurement errors of the luminosity distance are [92.4 Mpc, 179.4
Mpc, 264.5 Mpc] and [6.51 Mpc, 17.3 Mpc, 30.4 Mpc], respectively.
The counterpart Bayes mean and rms measurement errors for cos ι
are [0.901, 0.869, 0.851] and [0.068, 0.092, 0.107]. The dark and
light contours in the 2-D marginalized PDF plots indicate the 68
and 95% interval levels, respectively.
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Fig. 12.— The 1-D and 2-D marginalized PDFs for DL and
cos ι, averaged (as described in Sec. 3.4) over noise ensembles, for
the face-on CF binary at different values of the true luminosity

distance D̂L: [400 Mpc, 500 Mpc, 600 Mpc] (top to bottom). The
true values are marked with the solid black line. The Bayesian
means and rms measurement errors for the luminosity distance
are [352.2 Mpc, 437.8 Mpc, 524.5 Mpc] and [45.0 Mpc, 63.1 Mpc,
82.1 Mpc], respectively. The counterpart Bayes mean and rms
measurement errors for cos ι are [0.842, 0.830, 0.821] and [0.120,
0.131, 0.142]. The dark and light contours in the 2-D marginalized
PDF plots indicate the 68 and 95% interval levels, respectively.

meaningful comparisons between the performance of dif-
ference detector networks.

5.1. NS-NS binaries

We begin with the case in which we have we have de-
tected two hundred NS-NS binaries, either isotropically
distributed in inclination angle or from our beamed sub-
sample, using a network with all five detectors. Figure
15 shows scatter plots of the distance measurement ac-
curacies for our unbeamed and beamed events, with each
panel corresponding to a different detector network. The
distance measurement error is defined as the ratio of the
rms measurement error with the true value12 D̂L:

∆DL

D̂L

=

√
ΣDLDL

D̂L

. (65)

ΣDLDL is computed using (51). Although our small sam-
ple size precludes making definitive quantitative state-
ments, we emphasize some general trends in by Fig. 15
which are particularly relevant to standard siren con-
straints on cosmological parameters:

• The unbeamed total sample and the beamed sub-
sample separate into two rather distinct distribu-
tions. As anticipated, the beamed subsample im-
proves measurement errors in DL significantly, by
greater than a factor of two or more. This is pre-
dominantly due to the associated beaming prior in-
cluded in our analysis for these sources. The beam-
ing prior constrains our inclination angle, cos ι, to

12 Our definition differs from that given in CF94, their Eq.
(4.62). There, the distance measurement is described as the ra-
tio of the rms measurement error with the Bayes mean. We prefer
to use Eq. (65) as we are interested primarily in the measurement
error given a binary at its true luminosity distance.

∼ 3%, thereby breaking the strong DL–cos ι de-
generacy. By contrast, when no beaming prior is
assumed, we find absolute errors of 0.1–0.3 in cos ι
for the majority of events; see Fig. 16. The strong
DL–cos ι degeneracy then increases our distance er-
rors. It’s worth noting that a significant fraction of
binaries randomly selected from our sample have
0.5 . | cos ι̂| < 1. As discussed in Sec. 3.2, this
is due to the SNR selection criterion—at fixed dis-
tance, face-on binaries are louder and tend to be
preferred.

• When isotropic emission is assumed, we find a
large scatter in distance measurement errors for all
events, irrespective of network and true distance;
we find much less scatter when we assume a beam-
ing prior. This is illustrated very clearly by the
upper-right panel of Fig. 15. In that panel, we
show the scatter of distance measurement error
versus true distance for the LIGO, Virgo, AIGO
detector network, comparing to the Fisher-matrix-
derived linear scaling trend found in DHHJ06. For
the unbeamed case (magenta points and line), our
current results scatter around the linear trend; for
the beamed case, most events lie fairly close to the
trend. This demonstrates rather starkly the fail-
ure of Fisher methods to estimate distance mea-
surement accuracy, especially when we cannot set
a beaming prior.

• Adding detectors to the network considerably in-
creases the number of detected binaries, but does
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Fig. 13.— The 1-D marginalized PDF for DL, averaged (as
described in Sec. 3.4) over noise ensembles, for the face-on CF

binary for different detector networks. The true values D̂L are
marked with the solid black line. The lower right-hand panel gives
the case for the CF binary detected by LIGO, Virgo, AIGO, and
LCGT. The Bayes mean and rms measurement error for DL in
this case is [379.2 Mpc, 48.0 Mpc], respectively. The upper left-
hand panel is LIGO plus Virgo with [376.3 Mpc, 51.3 Mpc]; upper
right is LIGO, Virgo, and AIGO, with [378.4 Mpc, 47.9 Mpc];
and lower left is LIGO, Virgo, and LCGT, with [380.6 Mpc, 47.6
Mpc]. As with the nearly edge-on CF binary, we again find that the
additional detectors don’t greatly improve measurements in DL.



Short gamma-ray bursts as standard sirens 19

0 200 400 600 800 1000 1200 1400 1600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

D
L
 (Mpc)

N
or

m
al

iz
ed

 p
(D

L)

Fig. 14.— The 1-D marginalized PDFs for DL for eighty NS-NS
binaries randomly placed on the sky with random orientation, but

at fixed luminosity distance, D̂L = 432Mpc. We assume measure-
ment using the LIGO and Virgo detectors. The thin colored lines
show the normalized 1-D marginalized posterior PDFs for each
NS-NS binary, where each event has been averaged (as described
in Sec. 3.4) over all noise ensembles. The thick blue line illustrates
the normalized joint 1-D PDF for DL for the eighty events. The
mean and standard deviation in the mean of the luminosity dis-
tance for eighty binaries are 468.1 Mpc and 10.8 Mpc, respectively.
The standard deviation in the luminosity distance for each binary
is approximately 10.8 Mpc ×

√
80 ≈ 96.6Mpc.

not significantly improve the accuracy with which
those binaries are measured. The increase we see in
the number of detected binaries is particularly sig-
nificant for GW-SHB standard sirens. For instance,
an important application is mapping out the pos-
terior PDF for the Hubble constant H0. As the
number of events increases, the resulting joint pos-
terior PDF inH0 will become increasingly well con-
strained. Additional detectors also increases the
distance to which binaries can be detected. This
can be seen in Fig. 15: for the LIGO and Virgo net-
work, our detected events extend to D̂L ∼ 600 Mpc;
the larger networks all go somewhat beyond this.
Interestingly, networks which include the AIGO de-
tector seem to reach somewhat farther out.

It is perhaps a bit disappointing that increasing the
number of detectors in our network does not improve
measurement accuracy. We believe this is due to two
effects. First, a larger network tends to detect a larger
number of weaker signals, and thus the additional bina-
ries are poorly constrained. Second, the principle limita-
tion to our measurement accuracy is the DL–cos ι degen-
eracy. A substantial improvement in distance measure-
ment accuracy would require truly breaking this degen-
eracy (e.g., by applying the beaming prior).

5.2. NS-BH binaries

We now repeat the preceding analysis for NS-BH bi-
naries. Figure 17 shows scatter plots of measurement
accuracies for unbeamed and beamed NS-BH binaries.
We find similar trends as in the NS-NS case:

• The unbeamed and beamed samples separate into
two distinct distributions. Notice, however, that
outliers exist in measurement errors at high DL for
several beamed events for all networks. This is not
too surprising, given we expect beamed sources at
higher luminosity distances and lower SNR. Such
events are more likely to deviate from the linear
relationship predicted by the Fisher matrix.

• We see substantial scatter in distance measure-
ment, particularly when isotropic emission is as-
sumed. As with NS-NS, the scatter is not as se-
vere when we assume beaming, and in that case
lies fairly close to a linear trend, as weould be pre-
dicted by a Fisher matrix. (Note that this trend is
shallower in slope than for NS-NS binaries, thanks
to the larger mass of the system.)

• We do not see substantial improvement in distance
measurement as we increase the detector network.
As with NS-NS, adding detectors does increase the
range of the network; AIGO appears to particu-
larly add events at large D̂L (for both the isotropic
and beamed samples). However, adding detectors
does not break the fundamental DL–cos ι degener-
acy. From our full posterior PDFs, we find absolute
errors of 0.1–0.3 in cos ι, very much like in the NS-
NS case.

6. SUMMARY DISCUSSION

In this analysis, we systematically study how well grav-
itational waves can be used to measure luminosity dis-
tances, under the assumption that short-hard gamma
ray bursts are accompanied by binary inspiral. We ex-
amine two plausible compact binary SHB progenitors,
and a variety of plausible detector network configura-
tions. We emphasize that we assume sky position is
known. We build on the previous study of DHHJ06,
which used the so-called Gaussian approximation of the
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Fig. 15.— Distance measurement errors versus the true lu-
minosity distance for our sample of NS-NS binaries. Colored
points assume isotropic emission in our priors; black crosses as-
sume our beaming prior. The lower right-hand panel shows the
result for our “full” network (LIGO, Virgo, AIGO, and LCGT);
in this case, 200 unbeamed and 200 beamed binaries are in-
cluded. Upper left shows LIGO plus Virgo (84 unbeamed and
90 beamed); upper right is LIGO, Virgo, and AIGO (140 un-
beamed and 138 beamed); lower left is LIGO, Virgo, and LCGT
(141 unbeamed and 141 beamed). In the LIGO, Virgo, AIGO
panel we also show the Fisher-matrix-derived linear scaling given

in DHHJ06: ∆DL/D̂L ≃ D̂L/(4.4 Gpc) assuming beaming, and

∆DL/D̂L ≃ D̂L/(1.7 Gpc) for isotropic emission.
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Fig. 16.— Inclination angle measurement errors versus true incli-
nation angle for NS-NS binaries, assuming an isotropic orientation
distribution. The lower right-hand panel is for the “full” LIGO,
Virgo, AIGO, LCGT network and includes 200 binaries. Upper
left is LIGO plus Virgo (81 binaries); upper right is LIGO, Virgo,
and AIGO (140 binaries); and lower left is LIGO, Virgo, and LCGT
(141 binaries).

posterior PDF. This approximation is known to work
well for large SNR; the limits of its validity, however, are
not well understood. Since the SNR of events measured
by ground-based detectors is likely to be of order 10, we
are concerned that the Gaussian limit may not be valid.
We examine the posterior PDF for the parameters of
measured events using Markov Chain Monte Carlo tech-
niques, which do not rely on this approximation. We also
introduce a well-defined posterior PDF that is averaged
over all noise realizations and does not depend solely on
a particular noise instance. Such a quantity is especially
useful when we wish to predict how well a detector should
be able to measure the properties of a source or process.

We find that the Gaussian description of the likelihood
substantially underestimates distance measurement er-
rors. We also find that the main limitation for individual
standard siren measurements is the strong degeneracy
between distance to the binary and its inclination to the
line of sight. Adding detectors to a network does not sub-
stantially improve the distance measurement for a given
single event. When we assume that the SHB is isotropic
(so that we cannot infer anything about the source’s incli-
nation given the GRB measurement), we find that Fisher
matrix estimates of distance errors are very inaccurate.
Our distributions show very large scatter about Fisher-
based predictions.

The situation is improved dramatically if we can as-
sume that SHBs are collimated, thereby giving us a prior
on the orientation of the progenitor binary. By assum-
ing that the GRBs are preferentially emitted into an
opening angle of roughly 25◦, we find that the distance–
inclination correlation is strongly broken. In this case,
the Fisher matrix estimates are much more reasonable,
giving a fairly good sense of the trend with which dis-
tances are determined (albeit with a moderate amount
of scatter about that trend). This illustrates the impor-
tance of incorporating prior knowledge of our parameters
into our measurement.

Our distance measurement results are summarized by
Fig. 15 (for NS-NS SHB progenitors) and Fig. 17 (for NS-
BH). Assuming isotropy, we find the distance to NS-NS
binaries is measured with a fractional error of roughly
20–60%, with most events in our distribution clustered
near 20–30%. Beaming improves this by roughly a factor
of two, and elminates most of the high error events from
our sample. Similar results are found for NS-BH events,

with perhaps an improvement of 10% or so.
At first blush these findings appear disheartening with

regards to standard siren measurements. We emphasize,
however, that these results describe the outcome of in-
dividual siren measurements. When these measurements
are used as cosmological probes, we will be interested in
constructing the joint distribution, following observation
of N GW-SHB events. As Fig. 14 illustrates, the joint
distribution found by combining many individual mea-
surements becomes increasingly well constrained, wash-
ing out the scatter we see on an event-by-event basis.
Indeed, preliminary studies show that our ability to con-
strain H0 improves quite sharply as the number of mea-
sured binaries is increased. In our most pessimistic sce-
nario (the SHB is assumed to be a NS-NS binary, with
no prior on inclination, and measured by the baseline
LIGO-Virgo network), we find that H0 can be measured
with ∼ 13% fractional error with N = 4, improving to
∼ 5% for N = 15. We stress that this measurement is
based on absolute determinations of distance using stan-
dard sirens. (Details of this analysis will be presented in
a companion paper, currently in preparation.)

Increasing the number of measured events will thus
be crucial for getting cosmologically interesting measure-
ments. To this end, it is important to note that increas-
ing the number of detectors in our network enables a
considerable increase in the number of detected binaries.
This is due to both improvement in sky coverage, and
in the total detection volume. Going from a network
which includes all four detectors (LIGO, Virgo, AIGO,
and LCGT) to our baseline network of just LIGO and
Virgo entails a ∼ 50% reduction in the number of de-
tected binaries. Eliminating just one of the proposed
detectors (AIGO or LCGT) leaves us with ∼ 75% of
the original detected sample. Interestingly, we find that
AIGO shows a marked improvement in certain areas of
the sky, resulting in a smaller scatter of measurement
accuracies for an ensemble of events at low SNR.

Assuming an event rate density of 10 SHBs per year
per Gpc3 (Nakar et al. 2006), we expect to measure 6
NS-NS events per year or 44 NS-BH events per year us-
ing a network with all five detectors. For the LIGO-Virgo
network, we expect half this rate; for the LIGO-Virgo-
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Fig. 17.— Distance measurement errors versus the true lumi-
nosity distance for our sample of NS-BH binaries. Colored points
assume isotropic emission; black crosses use our beaming prior.
The lower right-hand panel shows the sample detected by our “full”
network (LIGO, Virgo, AIGO, LCGT) and includes 250 unbeamed
and 200 beamed binaries. Upper left is LIGO plus Virgo (117 un-
beamed and 98 beamed); upper right is LIGO, Virgo, and AIGO
(180 unbeamed and 147 beamed); and lower left is LIGO, Virgo,
and LCGT (179 unbeamed and 144 beamed).
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AIGO or LIGO-Virgo-LCGT network, we expect 3/4 of
this rate. If SHB collimation can be assumed, the rate
is further augmented by a factor of 1.12. At this rate,
we find that one year of observation should be enough
to measure H0 to an accuracy of ∼ 1% if SHBs are dom-
inated by beamed NS-BH binaries using the “full” net-
work of LIGO, Virgo, AIGO, and LCGT—admittedly,
our most optimistic scenario. A general trend we see is
a network of five detectors (as opposed to our baseline
LIGO-Virgo network of three detectors) increases mea-
surement accuracy in H0 by a factor of one and a half;
assuming that the SHB progenitor is a NS-BH binary
improves measurement accuracies by a factor of four or
greater. Errors in H0 are seen to improve by a factor of
at least two when we assume SHB collimation.

Aside from exploring the cosmological consequences of
these results, several other issues merit careful future
analysis. One general result we found is the importance
that prior distributions have on our final posterior PDF.
We plan to examine this in some detail, checking which
parameters particularly influence our final result, and as-
certaining what uncertainties can be ascribed to our in-
ability to set priors on these parameters. It may be pos-
sible to mitigate the influence of the DL–cos ι degeneracy
by setting a distance prior that requires our inferred dis-
tance to be consistent with the SHB’s observed redshift.

Another important issue is that of systematic errors
in binary modeling. We have used the second-post-
Newtonian description of a binary’s GWs in our analy-
sis; and, we have ignored all but the leading quadrupole
harmonic of the waves (the so-called “restricted” post-
Newtonian waveform). Our suspicion is that a more
complete post-Newtonian description of the phase would
have little impact on our results, since such effects are
not likely to have an impact on the all-important DL–
cos ι degeneracy. In principle, including additional (non-
quadrupole) harmonics could have an impact on this de-
generacy, since these other harmonics encode different
information about the inclination angle ι. In practice,
we expect that they won’t have much effect on GW-SHB
measurements, since these harmonics are measured with
very low SNR (the strongest harmonic is roughly a fac-
tor of 10 smaller in amplitude than the quadrupole). It
shouldn’t be too difficult to test this, however; given how
important this degeneracy has proven to be, it could be
a worthwhile exercise.

As discussed previously, we confine our analysis to the
inspiral part of the waveform. Inspiral waves are ter-
minated at the presumed innermost stable circular or-
bit frequency, fISCO = (63/2πMz). For NS-NS binaries,
fISCO ≃ 1600 Hz. At this frequency, detectors have fairly
poor sensitivity, and we are thus confident that termi-
nating the waves has little impact on our results for NS-
NS systems. However, for our assumed NS-BH binaries,
fISCO ≃ 400 Hz. Detectors have rather good sensitivity
in this band, so it may be quite important to improve
our model for the waves’ termination in this case.

Perhaps the most important follow-up would be to in-
clude the impact of spin. Although the impact of neutron
star spin is likely to be small, it may not be negligible;
and, for NS-BH systems, the impact of the black hole’s
spin could be significant. Spin induces precessions in
the binary which can make the orientation of the orbit,
L̂, dynamical. That in turn makes the observed incli-
nation dynamical, which can break the DL–cos ι degen-
eracy. Van der Sluys et al. (2008) have already shown
that spin precession physics vastly improves the ability
of ground-based detectors to determine a source’s posi-
tion on the sky; we are confident that a similar analysis
which assumes sky position will find that measurements
of source distance and inclination can likewise be im-
proved.
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B., Mészáros, P., Wijers, R. A. M., & Gehrels, N. 2006, ApJ,
653, 462

Hastings, W. K. 1970, Biometrika, 57, 97
Hogg, D. W. 1999, ArXiv Astrophysics e-prints
Kochanek, C. S., & Piran, T. 1993, ApJ, 417, L17
Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold,

B., Hinshaw, G., Jarosik, N., Larson, D., Limon, M., Page, L.,
Spergel, D. N., Halpern, M., Hill, R. S., Kogut, A., Meyer, S. S.,
Tucker, G. S., Weiland, J. L., Wollack, E., & Wright, E. L. 2009,
ApJS, 180, 330

Kopparapu, R. K., Hanna, C., Kalogera, V., O’Shaughnessy, R.,
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