1,956 research outputs found

    Evaluation of the cardiovascular system during various circulatory stresses

    Get PDF
    Hardware and techniques for studying human circulatory performance in space environmen

    Medical Applications of Aerospace Technology

    Get PDF
    Biomedical Application Teams are funded by the National Aeronautics and Space Administration for the purpose of applying aerospace technology to the solution of significant problems in biomedical research and clinical medicine. The Team at Stanford University Medical School is part of the Division of Cardiology and participates in all phases of the technology transfer process including: identification of significant biomedical problems, matching them with appropriate aerospace solutions, testing the new technology in the laboratory and clinical environment and finally, being the link to the medical device industry for commercially producing the technology. The underlying philosophy and general approach by which aerospace engineering and scientific expertise can be used to solve biomedical instrumentation problems is discussed. The methods by which the Teams accelerate the diffusion of new technology from aerospacerelated research to medical applications are reviewed. Specific examples of successful transfers are presented to illustrate the many phases of the technology transfer process and the need for a multidisciplinary, team approach. Innovative technology derived from aerospace-related research is providing the physician with new and better instrumentation for medical research and patient care

    A Rapid Survey of the Compatibility of Selected Seal Materials with Conventional and Semi-Synthetic JP-8

    Get PDF
    Since the synthesis of a liquid hydrocarbon fuel from coal by Franz Fischer and Hans Tropsch in 1923, there has been cyclic interest in developing this fuel for military and commercial applications. In recent years the U.S. Department of Defense has taken interest in producing a unified battlespace fuel using the Fischer Tropsch (FT) process for a variety of reasons including cost, quality, and logistics. In the past year there has been a particular emphasis on moving quickly to demonstrate that an FT fuel can be used in the form of a blend with conventional petroleum-derived jet fuel. The initial objective is to employ this semi-synthetic fuel with blend ratios as high as 50 percent FT with longer range goals to use even high blend ratios and ultimately a fully synthetic jet fuel. A significant concern associated with the use of a semi-synthetic jet fuel with high FT blend ratios is the effect these low aromatic fuels will have on fuel-wetted polymeric materials, most notably seals and sealants. These materials typically swell and soften to some degree when exposed to jet fuel and the aromatic content of these fuels contribute to this effect. Semi-synthetic jet fuels with very low aromatic contents may cause seals and sealants to shrink and harden leading to acute or chronic failure. Unfortunately, most of the material qualification tests are more concerned with excessive swelling than shrinkage and there is little guidance offered as to an acceptable level of shrinkage or other changes in physical properties related to low aromatic content. Given the pressing need for guidance data, a program was developed to rapidly survey the volume swell of selected fuel-wetted materials in a range of conventional and semi-synthetic jet fuels and through a statistical analysis to make a determination as to whether there was a basis to be concerned about using fuels with FT blend ratios as high as 50 percent. Concurrent with this analysis data was obtained as to the composition of the fuel absorbed in fuel-wetted materials through the use of GC-MS analysis of swollen samples as well as other supporting data. In this presentation the authors will present a summary of the results of the volume swell and fuel absorbed by selected O-rings and sealants as well as a description of the measurement protocols developed for this program

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    Bench-to-bedside review: The evaluation of complex interventions in critical care

    Get PDF
    Complex interventions, such as the introduction of medical emergency teams or an early goal-directed therapy protocol, are developed from a number of components that may act both independently and inter-dependently. There is an emerging body of literature advocating the use of integrated complex interventions to optimise the treatment of critically ill patients. As with any other treatment, complex interventions should undergo careful evaluation prior to widespread introduction into clinical practice. During the development of an international collaboration of researchers investigating protocol-based approaches to the resuscitation of patients with severe sepsis, we examined the specific issues related to the evaluation of complex interventions. This review outlines some of these issues. The issues specific to trials of complex interventions that require particular attention include determining an appropriate study population and defining current treatments and outcomes in that population, defining the study intervention and the treatment to be used in the control group, and deploying the intervention in a standardised manner. The context in which the research takes place, including existing staffing levels and existing protocols and procedures, is crucial. We also discuss specific details of trial execution, in particular randomization, blinded outcome adjudication and analysis of the results, which are key to avoiding bias in the design and interpretation of such trials

    Three dimensional evaluation of posture in standing with the PosturePrint: an intra- and inter-examiner reliability study

    Get PDF
    Abstract Background Few digitizers can measure the complexity of upright human postural displacements in six degrees of freedom of the head, rib cage, and pelvis. Methods In a University laboratory, three examiners performed delayed repeated postural measurements on forty subjects over two days. Three digital photographs (left lateral, AP, right lateral) of each of 40 volunteer participants were obtained, twice, by three examiners. Examiners placed 13 markers on the subjects before photography and chose 16 points on the photographic images. Using the PosturePrint® internet computer system, head, rib cage, and pelvic postures were calculated as rotations (Rx, Ry, Rz) in degrees and translations (Tx, Tz) in millimeters. For reliability, two different types (liberal = ICC3,1 & conservative = ICC2,1) of inter- and intra-examiner correlation coefficients (ICC) were calculated. Standard error of measurements (SEM) and mean absolute differences within and between observers' measurements were also determined. Results All of the "liberal" ICCs were in the excellent range (> 0.84). For the more "conservative" type ICCs, four Inter-examiner ICCs were in the interval (0.5–0.6), 10 ICCs were in the interval (0.61–0.74), and the remainder were greater than 0.75. SEMs were 2.7° or less for all rotations and 5.9 mm or less for all translations. Mean absolute differences within examiners and between examiners were 3.5° or less for all rotations and 8.4 mm or less for all translations. Conclusion For the PosturePrint® system, the combined inter-examiner and intra-examiner correlation coefficients were in the good (14/44) and excellent (30/44) ranges. SEMs and mean absolute differences within and between examiners' measurements were small. Thus, this posture digitizer is reliable for clinical use

    Output-Mode Transitions Are Controlled by Prolonged Inactivation of Sodium Channels in Pyramidal Neurons of Subiculum

    Get PDF
    Transitions between different behavioral states, such as sleep or wakefulness, quiescence or attentiveness, occur in part through transitions from action potential bursting to single spiking. Cortical activity, for example, is determined in large part by the spike output mode from the thalamus, which is controlled by the gating of low-voltage–activated calcium channels. In the subiculum—the major output of the hippocampus—transitions occur from bursting in the delta-frequency band to single spiking in the theta-frequency band. We show here that these transitions are influenced strongly by the inactivation kinetics of voltage-gated sodium channels. Prolonged inactivation of sodium channels is responsible for an activity-dependent switch from bursting to single spiking, constituting a novel mechanism through which network dynamics are controlled by ion channel gating
    corecore