815 research outputs found

    X-ray Variability and Emission Process of the Radio Jet in M87

    Full text link
    We monitored the M87 jet with the ACIS-S detector on Chandra with 5 observations between 2002 Jan and 2002 Jul. Our goal was to determine the presence and degree of variability in morphology, intensity, and spectral parameters. We find strong variability of the core and HST-1, the knot lying 0.8" from the core. These observations were designed to constrain the X-ray emission process: whereas synchrotron emission would necessitate the presence of extremely high energy electrons with a halflife of a few years or less, inverse Compton emission from a relativistic jet would arise from low energy electrons with very long halflives. Currently, all indications point to a synchrotron process for the X-ray emission from the M87 jet. We give key parameters for a ``modest beaming'' synchrotron model.Comment: 4 pages with 2 embedded figures (1 in color). To be published in the proceedings of the Bologna Jet Workshop "The Physics of Relativistic Jets in the CHANDRA and XMM Era", 23-27 September 2002, Brunetti, Harris, Sambruna, and Setti, editors. 2003, New Ast. Re

    Month-Timescale Optical Variability in the M87 Jet

    Full text link
    A previously inconspicuous knot in the M87 jet has undergone a dramatic outburst and now exceeds the nucleus in optical and X-ray luminosity. Monitoring of M87 with the Hubble Space Telescope and Chandra X-ray Observatory during 2002-2003, has found month-timescale optical variability in both the nucleus and HST-1, a knot in the jet 0.82'' from the nucleus. We discuss the behavior of the variability timescales as well as spectral energy distribution of both components. In the nucleus, we see nearly energy-independent variability behavior. Knot HST-1, however, displays weak energy dependence in both X-ray and optical bands, but with nearly comparable rise/decay timescales at 220 nm and 0.5 keV. The flaring region of HST-1 appears stationary over eight months of monitoring. We consider various emission models to explain the variability of both components. The flares we see are similar to those seen in blazars, albeit on longer timescales, and so could, if viewed at smaller angles, explain the extreme variability properties of those objects.Comment: 4 pages, 3 figures, ApJ Lett., in pres

    Determination of the intrinsic velocity field in the M87 jet

    Full text link
    A new method to estimate the Doppler beaming factor of relativistic large-scale jet regions is presented. It is based on multiwaveband fitting to radio-to-X-ray continua with synchrotron spectrum models. Combining our method with available observational data of proper motions, we derive the intrinsic velocity as well as the viewing angles to the line of sight for eight knotty regions down the M87 jet. The results favor the 'modest beaming' scenario along the jet, with Doppler factors varying between 2-5. The inner jet of M87 suffers sharp deceleration, and the intrinsic speed remains roughly constant down the outer jet. The orientation of the inner jet regions is fully consistent with the result of 10deg-19deg to the line of sight suggested by previous Hubble Space Telescope (HST) proper motion studies of the M87 jet. The outer jet, however, shows systematic deflection off the inner jet to much smaller inclination (<<10deg). Further calculation of knot A suggests this deflection can be regarded as evidence that the outer jet suffers some departure from equipartition. The nucleus region of the M87 jet should have a viewing angle close to its first knot HST-1, i.e. ~15deg, which favors the idea that M87 may be a misaligned blazar. This work provides some hints about the overall dynamics of this famous extragalactic jet.Comment: 11 pages, 3 figures, 4 tables, MNRAS, 2009, in pres

    Celebrating the past, concentrating on the future: the next decade for AR&T

    Full text link

    X-ray Emission Processes in Extragalactic Jets, Lobes and Hot Spots

    Get PDF
    This paper is a brief review of the processes responsible for X-ray emission from radio jets, lobes and hot spots. Possible photons in inverse Compton scattering models include the radio synchrotron radiation itself (i.e. synchrotron self-Compton [SSC] emission), the cosmic microwave background (CMB), the galaxy starlight and radiation from the active nucleus. SSC emission has been detected from a number of hot spots. Scattering of the CMB is expected to dominate for jets (and possibly hot spots) undergoing bulk relativistic motion close to the direction towards the observer. Scattering of infrared radiation from the AGN should be observable from radio lobes, especially if they are close to the active nucleus. Synchrotron radiation is detected in some sources, most notably the jet of M87. I briefly discuss why different hot spots emit X-rays by different emission mechanisms and the nature of the synchrotron spectra.Comment: To be published in the proceedings of the Bologna conference ``The Physics of Relativistic Jets in the Chandra and XMM Era'', New Astronomy Revie

    The radio-ultraviolet spectral energy distribution of the jet in 3C273

    Full text link
    We present deep VLA and HST observations of the large-scale jet in 3C 273 matched to 0.3" resolution. The observed spectra show a significant flattening in the infrared-ultraviolet wavelength range. The jet's emission cannot therefore be assumed to arise from a single electron population and requires the presence of an additional emission component. The observed smooth variations of the spectral indices along the jet imply that the physical conditions vary correspondingly smoothly. We determine the maximum particle energy for the optical jet using synchrotron spectral fits. The slow decline of the maximum energy along the jet implies particle reacceleration acting along the entire jet. In addition to the already established global anti-correlation between maximum particle energy and surface brightness, we find a weak positive correlation between small-scale variations in maximum particle energy and surface brightness. The origin of these conflicting global and local correlations is unclear, but they provide tight constraints for reacceleration models.Comment: 28 pages, lots of figures, accepted for publication in A&

    A Magnetohydrodynamic Model of the M87 Jet I: Superluminal Knot Ejections from HST-1 as Trails of Quad Relativistic MHD Shocks

    Full text link
    This is the first in a series of papers that introduces a new paradigm for understanding the jet in M87: a collimated relativistic flow in which strong magnetic fields play a dominant dynamical role. Here wefocus on the flow downstream of HST-1 - an essentially stationary flaring feature that ejects trails of superluminal components. We propose that these components are quad relativistic magnetohydrodynamic shock fronts (forward/reverse fast and slow modes) in a narrow jet with a helically twisted magnetic structure. And we demonstrate the properties of such shocks with simple one-dimensional numerical simulations. Quasi-periodic ejections of similar component trails may be responsible for the M87 jet substructures observed further downstream on 100 - 1,000 pc scales. This new paradigm requires the assimilation of some new concepts into the astrophysical jet community, particularly the behavior of slow/fast-mode waves/shocks and of current-driven helical kink instabilities. However, the prospects of these ideas applying to a large number of other jet systems may make this worth the effort.Comment: 7 pages, 4 figures, Accepted for Publication in Ap

    A cosmic ray cocoon along the X-ray jet of M87?

    Full text link
    Relativistic jets propagating through an ambient medium must produce some observational effects along their side boundaries because of interactions across the large velocity gradient. One possible effect of such an interaction would be a sheared magnetic field structure at the jet boundaries, leading to a characteristic radio polarization pattern. As proposed by Ostrowski, another effect can come from the generation of a high energy cosmic ray component at the boundary, producing dynamic effects on the medium surrounding the jet and forming a cocoon dominated by cosmic rays with a decreased thermal gas emissivity. We selected this process for our first attempt to look for the effects of this type of interaction. We analyzed the Chandra X-ray data for the radio galaxy M87 in order to verify if the expected regions of diminished emissivity may be present near the spectacular X-ray jet in this source. The detailed analysis of the data, merged from 42 separate observations, shows signatures of lower emissivity surrounding the jet. In particular we detect an intensity dip along the part of the jet, which would be approximately 150 pc x 2 kpc in size, if situated along the jet which is inclined toward us. Due to a highly non-uniform X-ray background in the central region we are not able to claim the discovery of a cosmic ray cocoon around the M87 jet: we only have demonstrated that the data show morphological structures which could be accounted for if a cosmic ray cocoon exists.Comment: 8 pages, 8 pictures accepted for publication in MNRA

    Variability Timescales in the M87 Jet: Signatures of E-Squared Losses, Discovery of a Quasi-period in HST-1, and the Site of TeV Flaring

    Full text link
    We investigate the variability timescales in the jet of M87 with two goals. The first is to use the rise times and decay times in the radio, ultraviolet and X-ray lightcurves of HST-1 to constrain the source size and the energy loss mechanisms affecting the relativistic electron distributions. HST-1 is the first jet knot clearly resolved from the nuclear emission by Chandra and is the site of the huge flare of 2005. We find clear evidence for a frequency-dependent decrease in the synchrotron flux being consistent with E-squared energy losses. Assuming that this behavior is predominantly caused by synchrotron cooling, we estimate a value of 0.6 mG for the average magnetic field strength of the HST-1 emission region, a value consistent with previous estimates of the equipartition field. In the process of analyzing the first derivative of the X-ray light curve of HST-1, we discovered a quasi-periodic oscillation which was most obvious in 2003 and 2004 prior to the major flare in 2005. The four cycles observed have a period of order 6 months. The second goal is to search for evidence of differences between the X-ray variability timescales of HST-1 and the unresolved nuclear region (diameter <0.6"). These features, separated by more than 60 pc, are the two chief contenders for the origin of the TeV variable emissions observed by HESS in 2005 and by MAGIC and VERITAS in 2008. The X-ray variability of the nucleus appears to be at least twice as rapid as that of the HST-1 knot. However, the shortest nuclear variability timescale we can measure from the Chandra data (<= 20 days) is still significantly longer than the shortest TeV variability of M87 reported by the HESS and MAGIC telescopes (1-2 days).Comment: Accepted for publication in the Astrophysical Journal. 16 pages including 9 figures, some in colo

    Flaring X-ray Emission from HST-1, a Knot in the M87 Jet

    Full text link
    We present Chandra X-ray monitoring of the M87 jet in 2002, which shows that the intensity of HST-1, an optical knot 0.8" from the core, increased by a factor of two in 116 days and a factor of four in 2 yrs. There was also a significant flux decrease over two months, with suggestive evidence for a softening of the spectrum. From this variability behavior, we argue that the bulk of the X-ray emission of HST-1 comes from synchrotron emission. None of the other conceivable emission processes can match the range of observed characteristics. By estimating synchrotron model parameters for various bulk relativistic velocities, we demonstrate that a model with a Doppler factor, delta, in the range 2 to 5 fits our preliminary estimates of light travel time and synchrotron loss timescales.Comment: 4 pages with 3 embedded figures; 1 of which is color but prints ok in b/w. Accepted for publication in the ApJ
    corecore