research

A Magnetohydrodynamic Model of the M87 Jet I: Superluminal Knot Ejections from HST-1 as Trails of Quad Relativistic MHD Shocks

Abstract

This is the first in a series of papers that introduces a new paradigm for understanding the jet in M87: a collimated relativistic flow in which strong magnetic fields play a dominant dynamical role. Here wefocus on the flow downstream of HST-1 - an essentially stationary flaring feature that ejects trails of superluminal components. We propose that these components are quad relativistic magnetohydrodynamic shock fronts (forward/reverse fast and slow modes) in a narrow jet with a helically twisted magnetic structure. And we demonstrate the properties of such shocks with simple one-dimensional numerical simulations. Quasi-periodic ejections of similar component trails may be responsible for the M87 jet substructures observed further downstream on 100 - 1,000 pc scales. This new paradigm requires the assimilation of some new concepts into the astrophysical jet community, particularly the behavior of slow/fast-mode waves/shocks and of current-driven helical kink instabilities. However, the prospects of these ideas applying to a large number of other jet systems may make this worth the effort.Comment: 7 pages, 4 figures, Accepted for Publication in Ap

    Similar works

    Full text

    thumbnail-image

    Available Versions