2,883 research outputs found

    Sensitivity of Recalibrated Continuous Glucose Monitor Data

    Get PDF
    Continuous glucose monitors (CGMs) are increasingly used in research settings to examine glucose metabolism in newborn babies. Accuracy of these devices depends on calibration blood glucose (BG) measurements entered into the CGM device. The potential impact of variations in timing and accuracy of reference calibration measurements on CGM device output were assessed

    Impact of calibration algorithms on hypoglycaemia detection in newborn infants using continuous glucose monitors

    Get PDF
    invited, 6-pagesNeonatal hypoglycaemia is a common condition that can cause seizures and serious brain injury in infants. It is diagnosed by blood glucose (BG) measurements, often taken several hours apart. Continuous glucose monitoring (CGM) devices can potentially improve hypoglycaemia detection, while reducing the number of BG measurements. Calibration algorithms convert the sensor signal into the CGM output. Thus, these algorithms can have a direct impact on measures used to quantify excursions from normal glycaemic levels. The aim of this study was to quantify the effects of calibration sensor error and non-linear filtering of CGM data on measures of hypoglycaemia (defined as BG < 2.6mmol/L) in neonates. CGM data was recalibrated using an algorithm that explicitly recognised the high accuracy of BG measurements available in this study. Median filtering was also implemented either before or after recalibration. Results for the entire cohort show an increase in the total number of hypoglycaemic events (161 to 193), duration of hypoglycaemia (2.2 to 2.6% of total data), and hypoglycaemic index (4.9 to 7.1µmol/L) after recalibration. With the addition of filtering, the number of hypoglycaemic events was reduced (193 to 131), with little or no change to the other metrics. These results show how reference sensor error and thus calibration algorithms play a significant role in quantifying hypoglycaemia. In particular, metrics such as counting the number of hypoglycaemic events were particularly sensitive to recalibration and filtering effects. While this conclusion might be expected, its potential impact is quantified here, in this case for at-risk neonates for whom hypoglycaemia carries potential long-term negative outcomes

    Continuous Monitoring of Dynamical Systems and Master Equations

    Full text link
    We illustrate the equivalence between the non-unitary evolution of an open quantum system governed by a Markovian master equation and a process of continuous measurements involving this system. We investigate a system of two coupled modes, only one of them interacting with external degrees of freedom, represented, in the first case, by a finite number of harmonic oscillators, and, in the second, by a sequence of atoms where each one interacts with a single mode during a limited time. Two distinct regimes appear, one of them corresponding to a Zeno-like behavior in the limit of large dissipation

    Chains of infinite order, chains with memory of variable length, and maps of the interval

    Full text link
    We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we caracterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval

    Aharonov-Bohm effect in a singly connected point contact

    Get PDF
    We report the discovery of an oscillation in the low-temperature magnetoresistance of a point contact in the two-dimensional electron gas of a GaAs-AlxGa1–xAs heterostructure. The oscillation is periodic in the magnetic field and is reminiscent of the Aharonov-Bohm effect in rings, although the geometry is singly connected. A possible mechanism for this quantum interference effect is tunneling between edge states across the point contact at the potential step at the entrance and the exit of the constriction

    Explicit asymptotic modelling of transient Love waves propagated along a thin coating

    Get PDF
    The official published version can be obtained from the link below.An explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples.This work is sponsored by the grant from Higher Education of Pakistan and by the Brunel University’s “BRIEF” research award

    Coating quality as affected by core particle segregation in fluidized bed processing

    Full text link
    [EN] Fluidized bed coating is an important technique in the food powder industry, where often particles of a wide size distribution are dealt with. In this paper, glass beads of different particle size distribution were coated with sodium caseinate in a top-spray fluid bed unit. Positron Emission Particle Tracking (PEPT) was used to visualize and quantify the particle motion in the fluidized bed. Confocal Laser Scanning Microscopy combined with image analysis were used to investigate the effect of core particle size and its distribution on the thickness and quality of the coating. Particle size significantly affected the thickness and quality of the coating, due to differences in the corresponding fluidization patterns, as corroborated by PEPT observations. As the particle size distribution becomes narrower, segregation is less likely to occur. This results in a thicker coating which is, however, less uniform compared to when cores of a wider particle size distribution are spray coated. (C) 2012 Elsevier Ltd. All rights reserved.The authors wish to thank the financial support received from the Fund for Scientific Research-Flanders (Belgium) (F.W.O.-Vlaanderen), as well as from the Programa de Apoyo a la Investigacion y Desarrollo from the Universitat Politecnica de Valencia.Atarés Huerta, LM.; Depypere, F.; Pieters, J.; Dewettinck, K. (2012). Coating quality as affected by core particle segregation in fluidized bed processing. Journal of Food Engineering. 113(3):415-421. doi:10.1016/j.jfoodeng.2012.06.012S415421113

    Quantum optical coherence tomography with dispersion cancellation

    Full text link
    We propose a new technique, called quantum optical coherence tomography (QOCT), for carrying out tomographic measurements with dispersion-cancelled resolution. The technique can also be used to extract the frequency-dependent refractive index of the medium. QOCT makes use of a two-photon interferometer in which a swept delay permits a coincidence interferogram to be traced. The technique bears a resemblance to classical optical coherence tomography (OCT). However, it makes use of a nonclassical entangled twin-photon light source that permits measurements to be made at depths greater than those accessible via OCT, which suffers from the deleterious effects of sample dispersion. Aside from the dispersion cancellation, QOCT offers higher sensitivity than OCT as well as an enhancement of resolution by a factor of 2 for the same source bandwidth. QOCT and OCT are compared using an idealized sample.Comment: 19 pages, 4 figure

    Net Charge on a Noble Gas Atom Adsorbed on a Metallic Surface

    Full text link
    Adsorbed noble gas atoms donate (on the average) a fraction of an electronic charge to the substrate metal. The effect has been experimentally observed as an adsorptive change in the electronic work function. The connection between the effective net atomic charge and the binding energy of the atom to the metal is theoretically explored.Comment: ReVvTeX 3.1 format, Two Figures, Three Table

    Disparate associations of a functional promoter polymorphism in PCK1 with carotid wall ultrasound traits

    Get PDF
    Background and Purpose - Cytosolic phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32), encoded by PCK1, catalyzes the first committed step in gluconeogenesis. We previously showed that a -232C\u3eG promoter polymorphism within a cis-acting element required for basal and cAMP-mediated PCK1 gene transcription results in loss of negative regulation by insulin, contributing to worsened metabolic control in the context of insulin resistance. We hypothesized that this polymorphism would be associated with carotid atherosclerosis in a sample of 150 aboriginal Canadians. Methods - Dependent variables were 2 distinct carotid traits, namely intima-media thickness (IMT) assessed using B-mode ultrasound and total carotid plaque volume (TPV) assessed using 3D ultrasound. Results - Multivariate analysis showed significant but opposite associations of PCK1 genotype with these traits. Specifically, subjects with the PCK1-232G/G genotype had more carotid IMT (0.80±0.02 versus 0.73±0.03 mm; P=0.007) but less TPV (0.10±0.09 versus 0.38±0.13; P=0.03) than subjects with other genotypes. Conclusions - The findings connect the key enzyme in gluconeogenesis with atherosclerosis. The meaning of the opposing associations of PCK1 genotype with IMT and TPV is unclear; more work is required to confirm whether these might be distinct quantitative traits with different biological determinants. © 2005 American Heart Association, Inc
    corecore