Coating quality as affected by core particle segregation in fluidized bed processing

Abstract

[EN] Fluidized bed coating is an important technique in the food powder industry, where often particles of a wide size distribution are dealt with. In this paper, glass beads of different particle size distribution were coated with sodium caseinate in a top-spray fluid bed unit. Positron Emission Particle Tracking (PEPT) was used to visualize and quantify the particle motion in the fluidized bed. Confocal Laser Scanning Microscopy combined with image analysis were used to investigate the effect of core particle size and its distribution on the thickness and quality of the coating. Particle size significantly affected the thickness and quality of the coating, due to differences in the corresponding fluidization patterns, as corroborated by PEPT observations. As the particle size distribution becomes narrower, segregation is less likely to occur. This results in a thicker coating which is, however, less uniform compared to when cores of a wider particle size distribution are spray coated. (C) 2012 Elsevier Ltd. All rights reserved.The authors wish to thank the financial support received from the Fund for Scientific Research-Flanders (Belgium) (F.W.O.-Vlaanderen), as well as from the Programa de Apoyo a la Investigacion y Desarrollo from the Universitat Politecnica de Valencia.Atarés Huerta, LM.; Depypere, F.; Pieters, J.; Dewettinck, K. (2012). Coating quality as affected by core particle segregation in fluidized bed processing. Journal of Food Engineering. 113(3):415-421. doi:10.1016/j.jfoodeng.2012.06.012S415421113

    Similar works