1,125 research outputs found

    Slow Light in Doppler Broadened Two level Systems

    Get PDF
    We show that the propagation of light in a Doppler broadened medium can be slowed down considerably eventhough such medium exhibits very flat dispersion. The slowing down is achieved by the application of a saturating counter propagating beam that produces a hole in the inhomogeneous line shape. In atomic vapors, we calculate group indices of the order of 10^3. The calculations include all coherence effects.Comment: 6 pages, 5 figure

    Polariton Analysis of a Four-Level Atom Strongly Coupled to a Cavity Mode

    Get PDF
    We present a complete analytical solution for a single four-level atom strongly coupled to a cavity field mode and driven by external coherent laser fields. The four-level atomic system consists of a three-level subsystem in an EIT configuration, plus an additional atomic level; this system has been predicted to exhibit a photon blockade effect. The solution is presented in terms of polaritons. An effective Hamiltonian obtained by this procedure is analyzed from the viewpoint of an effective two-level system, and the dynamic Stark splitting of dressed states is discussed. The fluorescence spectrum of light exiting the cavity mode is analyzed and relevant transitions identified.Comment: 12 pages, 9 figure

    Inhibition of electromagnetically induced absorption due to excited state decoherence in Rb vapor

    Get PDF
    The explanation presented in [Taichenachev et al, Phys. Rev. A {\bf 61}, 011802 (2000)] according to which the electromagnetically induced absorption (EIA) resonances observed in degenerate two level systems are due to coherence transfer from the excited to the ground state is experimentally tested in a Hanle type experiment observing the parametric resonance on the % D1 line of 87^{87}Rb. While EIA occurs in the F=1F=2F=1\to F^{\prime}=2 transition in a cell containing only RbRb vapor, collisions with a buffer gas (30torr30 torr of NeNe) cause the sign reversal of this resonance as a consequence of collisional decoherence of the excited state. A theoretical model in good qualitative agreement with the experimental results is presented.Comment: 8 pages, 7 figures, submitted to Physical Review

    Power Corrections and Renormalons in Deep Inelastic Structure Functions

    Get PDF
    We study the power corrections (infrared renormalon contributions) to the coefficient functions for non-singlet deep inelastic structure functions due to gluon vacuum polarization insertions in one-loop graphs. Remarkably, for all the structure functions F1F_1, F2F_2, F3F_3 and g1g_1, there are only two such contributions, corresponding to 1/Q21/Q^2 and 1/Q41/Q^4 power corrections. We compute their dependence on Bjorken xx. The results could be used to model the dominant higher-twist contributions.Comment: Latex 2e, 9 pages including 2 Postscript figure

    Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes

    Full text link
    To assess how future progress in gravitational microlensing computation at high optical depth will rely on both hardware and software solutions, we compare a direct inverse ray-shooting code implemented on a graphics processing unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU, and a recent implementation of a parallel tree code suitable for a CPU-based cluster supercomputer. We examine the accuracy of the tree codes through comparison with a direct code over a much wider range of parameter space than has been feasible before. We demonstrate that all three codes present comparable accuracy, and choice of approach depends on considerations relating to the scale and nature of the microlensing problem under investigation. On current hardware, there is little difference in the processing speed of the single-core CPU tree code and the GPU direct code, however the recent plateau in single-core CPU speeds means the existing tree code is no longer able to take advantage of Moore's law-like increases in processing speed. Instead, we anticipate a rapid increase in GPU capabilities in the next few years, which is advantageous to the direct code. We suggest that progress in other areas of astrophysical computation may benefit from a transition to GPUs through the use of "brute force" algorithms, rather than attempting to port the current best solution directly to a GPU language -- for certain classes of problems, the simple implementation on GPUs may already be no worse than an optimised single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom

    Quantum coherence in a degenerate two-level atomic ensemble: for a transition Fe=0Fg=1F_e=0\leftrightarrow F_g=1

    Full text link
    For a transition Fe=0Fg=1F_e=0\leftrightarrow F_g=1 driven by a linearly polarized light and probed by a circularly light, quantum coherence effects are investigated. Due to the coherence between the drive Rabi frequency and Zeeman splitting, electromagnetically induced transparency, electromagnetically induced absorption, and the transition from positive to negative dispersion are obtained, as well as the populations coherently oscillating in a wide spectral region. At the zero pump-probe detuning, the subluminal and superluminal light propagation is predicted. Finally, coherent population trapping states are not highly sensitive to the refraction and absorption in such ensemble.Comment: 9 pages, 6 figure

    Reverse Monte Carlo modeling of amorphous silicon

    Full text link
    An implementation of the Reverse Monte Carlo algorithm is presented for the study of amorphous tetrahedral semiconductors. By taking into account a number of constraints that describe the tetrahedral bonding geometry along with the radial distribution function, we construct a model of amorphous silicon using the reverse monte carlo technique. Starting from a completely random configuration, we generate a model of amorphous silicon containing 500 atoms closely reproducing the experimental static structure factor and bond angle distribution and in improved agreement with electronic properties. Comparison is made to existing Reverse Monte Carlo models, and the importance of suitable constraints beside experimental data is stressed.Comment: 6 pages, 4 PostScript figure

    Quantum trajectory approach to stochastically-induced quantum interference effects in coherently-driven two-level atoms

    Get PDF
    Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the quantum trajectory method. A new method is developed for calculating the resonance fluorescence spectra from numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is responsible for quantum interference between the related transitions resulting in anomalous modifications of the resonance fluorescence spectra.Comment: paper accepted for publicatio

    Resonance fluorescence of a trapped three-level atom

    Get PDF
    We investigate theoretically the spectrum of resonance fluorescence of a harmonically trapped atom, whose internal transitions are Λ\Lambda--shaped and driven at two-photon resonance by a pair of lasers, which cool the center--of--mass motion. For this configuration, photons are scattered only due to the mechanical effects of the quantum interaction between light and atom. We study the spectrum of emission in the final stage of laser--cooling, when the atomic center-of-mass dynamics is quantum mechanical and the size of the wave packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use the spectral decomposition of the Liouville operator of the master equation for the atomic density matrix and apply second order perturbation theory. We find that the spectrum of resonance fluorescence is composed by two narrow sidebands -- the Stokes and anti-Stokes components of the scattered light -- while all other signals are in general orders of magnitude smaller. For very low temperatures, however, the Mollow--type inelastic component of the spectrum becomes visible. This exhibits novel features which allow further insight into the quantum dynamics of the system. We provide a physical model that interprets our results and discuss how one can recover temperature and cooling rate of the atom from the spectrum. The behaviour of the considered system is compared with the resonance fluorescence of a trapped atom whose internal transition consists of two-levels.Comment: 11 pages, 4 Figure
    corecore