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Resonance fluorescence of a trapped three-level atom
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~Received 4 August 2003; published 21 January 2004!

We investigate theoretically the spectrum of resonance fluorescence of a harmonically trapped atom, whose
internal transitions areL shaped and driven at two-photon resonance by a pair of lasers, which cool the
center-of-mass motion. For this configuration, photons are scattered only due to the mechanical effects of the
quantum interaction between light and atom. We study the spectrum of emission in the final stage of laser
cooling, when the atomic center-of-mass dynamics is quantum mechanical and the size of the wave packet is
much smaller than the laser wavelength~Lamb-Dicke limit!. We use the spectral decomposition of the Liou-
ville operator of the master equation for the atomic density matrix and apply second-order perturbation theory.
We find that the spectrum of resonance fluorescence is composed of two narrow sidebands—the Stokes and
anti-Stokes components of the scattered light—while all other signals are in general orders of magnitude
smaller. For very low temperatures, however, the Mollow-type inelastic component of the spectrum becomes
visible. This exhibits novel features which allow further insight into the quantum dynamics of the system. We
provide a physical model that interprets our results and discuss how one can recover temperature and cooling
rate of the atom from the spectrum. The behavior of the considered system is compared with the resonance
fluorescence of a trapped atom whose internal transition consists of two levels.

DOI: 10.1103/PhysRevA.69.013405 PACS number~s!: 32.80.Lg, 42.50.Gy, 42.50.Lc, 42.50.Vk
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I. INTRODUCTION

Cold trapped atoms are an ideal system for investiga
the quantum properties of the mechanical effects of pho
atom interaction. Pioneering experiments with optical lattic
and ion traps have allowed to measure and characterize
eral properties of the scattered radiation, thereby gaining
sight into the dynamics of the driven atoms and, in particu
of the mechanical effects of light on the atomic center-
mass motion@1,2#. Recently, in experiments with singl
trapped ions it has been possible to measure with high
cision the elastic component of the light scattered by a dri
dipole @3–5#, and to observe and characterize the Stokes
anti-Stokes components due to the harmonic motion in
trap @5#, thereby confirming theoretical predictions@6,7#.
Lately, the properties and the manifestation of the mech
cal effects in the light scattered by these systems is exp
encing renewed interest in several experiments, investiga
the coupling of radiation with single atoms and ions in op
cal resonators@8–15#.

In this work, we investigate the spectrum of resonan
fluorescence of a harmonically trapped atom, whose inte
transition isL shaped, and which is cooled by two lase
tuned at two-photon resonance. This configuration is pe
liar, since photon emission arises only due to the mechan
effects in the photon-atom interaction. In fact, when the c
pling between internal and external degrees of freedom
be neglected~e.g., for copropagating laser beams!, this sys-
tem exhibits coherent population trapping@16–18#: The elec-
tronic stationary state is a stable coherence, which does
absorb photons due to destructive interference between
dipole excitation paths, leading to no emission of photon
steady state. In contrast, for laser configurations where
photon processes are Doppler-sensitive, internal and exte
degrees of freedom are coupled. If the atomic center-of-m
1050-2947/2004/69~1!/013405~12!/$22.50 69 0134
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motion is confined in a steep potential, such configurat
may allow for laser cooling to the potential ground sta
@19,20#. Here, we study the spectral properties of the rad
tion scattered by the atoms in the final stage of the las
cooling dynamics.

Our theoretical analysis considers the quantum dynam
of the internal and external degrees of freedom of the at
It is based on the perturbative expansion of the atomic
namics in second order in the Lamb-Dicke parameter, i.e
the ratio between the size of the wave packet over the la
wavelength@21#. We extend previous theoretical investig
tions @6,7#, which analyzed the Stokes and anti-Stokes co
ponents of the radiation scattered by the dipole transition
a trapped atom. In those studies these components dom
over the Mollow inelastic spectrum of the bare dipole@22#,
which is mainly due to photon scattering at zero order in
Lamb-Dicke expansion. In our case, the spectral compon
of the bare three-level atom disappears due to destruc
quantum interference@23#, and additional features emerg
which allow further insight into the coupled dynamics b
tween the internal and external degrees of freedom of
driven atom. We analyze each spectral component, and
cuss how to extract information from these results about
atomic dynamics at steady state. Our approach is base
the analysis of the spectrum of the Liouville operator det
mining the dynamics of the density matrix@24,25#. An alter-
native approach, presented in Refs.@26,27#, consists in
studying the spectrum of resonance fluorescence through
temporal behavior of single quantum systems in the spiri
the method of quantum trajectories@28#.

This work is organized as follows. In Sec. II the system
described and the dynamics is discussed qualitatively. In S
III we present the theoretical description and evaluate
spectrum using the formalism of Refs.@6,7#. We apply per-
turbation theory combined with the spectral decomposit
©2004 The American Physical Society05-1
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of the Liouville operator@24,25#, and calculate contribution
to the spectrum at higher orders in the Lamb-Dicke exp
sion. In Sec. IV the results are summarized and compa
with the picture for the dynamics presented in Sec. II.
nally, we compare our results with the spectrum of a tw
level transition driven by a plane and by a standing wave
evaluated in Refs.@6,7#. In the Appendixes, several details
the theoretical derivation are reported. The reader who is
interested in the theoretical details can discard Sec. III w
out loss of coherence in the presentation.

II. MODEL AND QUALITATIVE DESCRIPTION
OF THE DYNAMICS

We investigate theoretically the spectrum of resona
fluorescence of a driven three-level atom, whose center
mass motion is confined by a harmonic potential, as depic
in Fig. 1. For simplicity, we consider one-dimensional m
tion along thex axis. The relevant electronic transitions a
arranged in aL configuration, composed of two stable
metastable statesu1& and u2& and an excited stateu3&. The
transitionsu j &→u3& are dipoles with momentsdj and line-
width g j ( j 51,2), such that the linewidth of the excited sta

FIG. 1. ~a! Geometry of the lasers and position of the detec
with respect to the axisx of the atomic center-of-mass motion. W
denote withk1cosf1 andk2cosf2 the projections of the laser wav
vectors on thex axis. The detector D records the light scattered
an anglec with respect to the motional axis.~b! Relevant electronic
transitions. The stable or metastable statesu1& and u2& are coupled
by dipole transitions to the excited stateu3&. The lasers drive
the transitionu j &→u3& with Rabi frequencyV j and both are tuned
from resonance byd. The stateu3& decays with rateg j into
u j & ( j 51,2).
01340
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u3& is g5g11g2. The atom is driven by the bichromati
field E5E11E2, with

Ej~x,t !5Ejeje
ik j cosf j xe2 ivL, j t1c.c., ~1!

wherex denotes the atomic center-of-mass position. HereEj
and ej are amplitude and polarization of the field modes
the optical frequencyvL, j with wave vectorkj , andf j is the
angle between the laser wave vector and thex axis. The
componentsEj drive the dipolesdj and are tuned by the
same detuningd from resonance, such that the statesu1& and
u2& are resonantly coupled by two photon processes. A
tector monitors the light scattered at the anglec with respect
to thex axis, thereby measuring the spectrum of the intens

Throughout this work, we investigate the manifestation
the mechanical effects of the interaction between light a
atom in the spectral signal. The system is in the regi
where the size of the center-of-mass wave packetDx is much
smaller than the wavelength of the incident radiationlL
~Lamb-Dicke regime!, and the laser fieldE cools the motion
@19,20#.

In the Lamb-Dicke regime, the dynamics of the drive
atom can be described by a hierarchy of processes at
different orders in the ratioDx/lL , which accounts for the
effects of the field spatial gradient over the center-of-m
wave packet. At zero order inDx/lL , internal and externa
degrees of freedom are decoupled, and the internal statio
state of the atom is the dark state@16#

ucD&5
V2u1&2V1u2&

AV1
21V2

2
, ~2!

with the Rabi frequencyV j5dj•ejEj /\, which we assume
to be real. In this limit, at steady state the density matrix
the atom is the productrDm of the density matrix for the
external degrees of freedomm and for the internal degrees o
freedomrD5ucD&^cDu.

At first order in Dx/lL the stateucD& becomes unstable
due to the spatial gradient of the field over the finite size
the wave packet: Therefore, at steady state the density m
of the atom isrst5rDm1O(Dx/lL), where the correction
O(Dx/lL) accounts for the processes due to the mechan
effects of the coupling between light and atom.

The dynamics of this system has been investigated in R
@20# in the context of laser cooling. There, it has been ch
acterized by two main time scales: A faster time scaleT0, for
the scattering processes at zero order inDx/lL , where inter-
nal and external degrees of freedom are decoupled, an
slower time scaleT1@T0, where the effects due to the fiel
gradient along the center-of-mass wave packet manifest.
the time scaleT0 the internal dynamics accesses the da
stateucD&, and the atom ceases to scatter photons. On
time scaleT1 the atom absorbs light that is out of phase w
the laser field due to the harmonic motion, thereby leav
the dark state and undergoing transitions that change the
brational state. Then, light is scattered at zero order inDx/lL
and the atom reaccesses the dark state. In other words,
coarse-grained time scale the internal state of the atom
rD , whereas the correction termO(Dx/lL) in rst accounts

r

t
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for the processes which couple internal and external deg
of freedom, and give rise to the spectrum of emissi
Throughout the paper we use parameters typical for
cooling @19,20# which allow for a steady state with a ver
low phonon number. In particular, this implies that the las
are tuned on the blue side of the atomic resonance@29#.
Hence, the density matrixm for the external degrees of free
dom describes the thermal state reached in the last stag
the laser-cooling dynamics@20#.

In Fig. 2 two spectra of emission of the dipoled1 @30# are
shown as a function of the frequencyv for ~a! Dx/lL'7
31024 and ~b! Dx/lL'431023. They are the sum of the
elastic and Mollow-type spectra, as evaluated in the follo
ing section. The most striking feature is the visibility of th
sidebands of the elastic peak, namely, the two signal
vL,16n, compared to the rest of the spectrum. These m
tional sidebands are Lorentz curves of equal height
width, independently of the observation anglec. Their func-

FIG. 2. Spectrum of resonance fluorescenceS(v) ~in arbitrary
units! as a function of the frequencyv2vL,1 in units of n. The
parameters areV15V258.5n, g510n, g15g2 , d535n, f1

50, f25p, corresponding tôn&50.005. The angle of detectio
c is not specified, since the shape ofS(v) is independent of it. In
~a! h15h250.01 ~corresponding toDx/lL'731024), in ~b! h1

5h250.05 (Dx/lL'431023). In the inset the contributions to
the spectrum are plotted separately atv5vL,16n: The solid line
corresponds to the signal of the Stokes and anti-Stokes compon
the dashed line to the signal due to the Mollow-type inelastic sp
trum. Note that the central component~Rayleigh peak! is d-like but
its integrated signal is at higher order in the perturbative expan
than the sidebands signal, see Sec. III B.
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tional dependence on the frequency is plotted in the inset
Fig. 2. They originate from Raman scattering process
where the initial and final state isucD& and the vibrational
state is changed by one phonon. These processes occ
the time scaleT1, which also determines the linewidth of th
resonances.

The broad signals of the spectrum correspond to
Mollow-type inelastic spectrum@23,26# and their typical
height is orders of magnitude smaller than the height of
motional sidebands forDx/lL'731024, while it is compa-
rable forDx/lL'431023. We remark that the intensity o
the elastic peak is at higher order inDx/lL . In the follow-
ing, we evaluate and discuss the spectrum in detail.

III. EVALUATION OF THE SPECTRUM OF RESONANCE
FLUORESCENCE

Let the detector measure the radiation scattered by
dipoled1 @30#. In the far field the spectrum at frequencyv is
S(v)5xS(v), wherex collects all prefactors which do no
depend onv. All results are rescaled by this common facto
which contains the dipole radiation pattern and is therefor
function ofc. At a different angle than the laser propagati
directions, the expression

S~v!5ReE
0

`

dte2 i (v2vL,1)t^D†~x,t!D~x,0!& ~3!

contains the frequency dependence, whereD(x,t) is the gen-
eralized dipole lowering operator for the transitionu1&
→u3& in the reference frame rotating with the laser fr
quencyvL,1 . By means of the quantum regression theore
the two-time correlation function in Eq.~3! is determined by
the Liouvillian L defined in the master equation]r/]t5Lr
for the atomic dynamics@28#. Thus, the dipole lowering op
erator at timet in Eq. ~3! is given byD(x,t)5D(x)eLt with
D(x)5e2 ik1x coscu1&^3u. Here, the center-of-mass positionx
is an operator acting on the atomic external degrees of f
dom. The averagê•& is taken over the atomic density matr
rst at steady state, given byLrst50.

We evaluateS(v), Eq. ~3!, by applying the spectral de
composition of the Liouville operatorL @24,25# according to
the secular equations

Lrl5lrl,

řlL5lřl,

with eigenvaluesl and right and left eigenelementsrl and
řl, respectively. The orthogonality and completeness of
eigenelements is defined with respect to the trace, such
Tr$řl8rl%5dl8,l , where any density operatorr can be de-
composed asr5(lrlTr$řlr% @31#. We define the projectors
onto the eigenspace corresponding to the eigenvaluel as
P l5rl

^ řl leading to

LP l5P lL5lP l. ~4!

ts,
c-

n
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Their action on an operatorX is defined as P lX

5rlTr$řlX%. By applying this formalism, we rewrite Eq
~3! as

S~v!5Re(
l

1

i ~v2vL,1!2l
Tr$D†~x!P lD~x!rst%. ~5!

Hence, the spectrum of resonance fluorescence is the su
Lorentz and/or Fano-like profiles, centered at the imagin
part of the eigenvalues ofL, with width given by the real
part ofl. The exact evaluation of the spectrum for this ki
of problem, with an infinite number of degrees of freedom
a hard task. Nevertheless, an analytic solution can be fo
in the Lamb-Dicke regime. In this limit, we do a perturbati
expansion in the parameterDx/lL on a spectral decompos
tion of L, of which the spectrum$l% and the respective
eigenelements at zero order are known.

A. Theoretical description

The master equation for the atomic dynamics reads

]

]t
r~ t !5Lr~ t !5

1

i\
@H,r~ t !#1Kr~ t !, ~6!

whereH is the Hamilton operator for the coherent dynam
and K is the Liouvillian describing spontaneous emissio
We decompose the Hamilton operator as

H5Hmec1H01V~x!,

where H05\d( j 51,2u j &^ j u gives the eigenenergies of th
electronic states in the reference frame of the laser, witd
5vL,12v15vL,22v2, wherev j denotes the frequency o
the transitionu j &→u3&. The termHmec describes the center
of-mass motion of the atom with massM in a harmonic
potential of frequencyn,

Hmec5
p2

2M
1

1

2
Mn2x25\nS a†a1

1

2D , ~7!

wherex andp are the canonical conjugate variables desc
ing position and momentum of the atom, whereasa anda†

are the annihilation, creation operators of a quantum of
ergy \n, respectively, such thatx5A\/2Mn(a1a†), and
p5 iA\Mn/2(a†2a). We denote withun& the eigenelements
of Hmec, fulfilling Hmecun&5\n(n11/2)un& with n
50,1,2, . . . .

The termV(x) describes the coherent interaction of t
atom with the lasers at the positionx of the center of mass

V~x!5
1

2 (
j 51,3

\V j~e2 ik jcosf j xu3&^ j u1H.c.!, ~8!

and the exponentials account for the recoil mome
6\kjcosfj of the atom when absorbing or emitting a ph
ton. The operatorK in Eq. ~6! describes the spontaneou
decay, according to
01340
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Kr~ t !52
g

2
~ u3&^3ur~ t !1r~ t !u3&^3u!

1 (
j 51,2

g j u j &^3ur̃ j~ t !u3&^ j u, ~9!

whereg11g25g. Here, we have introduced

r̃ j~ t !5E
21

1

dcos~u!N„cos~u!…eik jx cosur~ t !e2 ik j x cosu,

~10!

which describes the momentum transfer\kjcosu due to the
photons spontaneously emitted at angleu with respect to the
motional axis and with angular distributionN(cosu).

B. Perturbative expansion in the Lamb-Dicke parameter

In the Lamb-Dicke regime we can approximate

exp~6 ik jx cosw!5@12h j
2cos2w/2~2a†a11!#

6 ih j cosw~a†1a!1O~h j
2!,

where

h j5A \kj
2

2Mn

is the Lamb-Dicke parameter, corresponding to the ratio
the size of the oscillator ground state over the laser wa
length. Here,h j is the parameter of the perturbative expa
sion, and it fulfills the relationh jA2^n&11'Dx/lL!1. In
second order inh j expression~5! has the form

S~v!5S0~v!1S1~v!1S2~v!1O~h j
3!, ~11!

where the subscripta50,1,2 indicates the corresponding o
der in the perturbative expansion. In order to evalu
Sa(v), we expand the operatorsL and D in power of h j ,
yielding

D05u1&^3u,

D152 ik1x coscu1&^3u,

D252 1
2 k1

2x2 cos2cu1&^3u,

and

L0r5
1

i\
@Hmec,r#1

1

i\
@H01V~0!,r#1K0r5~LE1LI !r,

~12!

L1r5
1

i\
@V1x,r#, ~13!

L2r5
1

2i\
@V2x2,r#1K2r. ~14!
5-4
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In Eq. ~12! we have introduced the Liouville operatorsLE
andLI , which account for the external and internal degre
of freedom. They are defined asLEr51/i\@Hmec,r# and
LIr51/i\@H01V(0),r#1K0r.

By determiningLa , we have used the expansion of th
interaction term, Eq. ~8!, V(x)5V(0)1V1x1V2x2/2
1O(h j

3) with

Va5
]a

]xa
V~x!ux50 , a51,2 ~15!

and the expansion of Eq.~9!, yielding

K0r5 (
j 51,2

g j

2
~2u j &^3uru3&^ j u2u3&^3ur2ru3&^3u!,

K2r5b (
j 51,2

g j kj
2u j &^3u~2xrx2x2r2rx2!u3&^ j u.

Here,b5*21
11d cosuN(cosu)cos2u is a constant. We remar

that the first-order termK1 vanishes after averaging over th
angle of emissionu.

From Eq. ~12! it can be seen that internal and extern
degrees of freedom are decoupled at zero order. Hence
eigenvalues ofL0 are

l05lE1l I , ~16!

with lE andl I being the eigenvalues ofLE andLI , respec-
tively. The projectorP 0

l in the corresponding eigenspace fa
torizes into the projectorsP I

l I andP E
lE assigned to the inter

nal and external degrees of freedom, according to

P 0
l5P I

l IP E
lE . ~17!

The spectrum ofLI characterizes the dynamics of the thre
level transition and the spectral properties of the radiat
emitted by the bare atom. The eigenvalues ofLE take on the
valueslE5 i ,n, with ,50,61,62, . . . . Each eigenspace a
lE is infinitely degenerate, and the corresponding left a
right eigenelements are, for instance,m̌n

,5un1,&^nu, mn
,

5un&^n1,u. These eigenelements constitute a complete
orthonormal basis over the eigenspace at this eigenvalu
particular, the projector over the eigenspace atlE5 i ,n is
defined on an operatorX as

P E
lE5 i ,nX5(

n
mn

,TrE$m̌n
,X%5(

n
un&^nuXun1,&^n1,u,

~18!

where TrE denotes the trace over the external degrees
freedom.

At first order in the expansion inh j internal and externa
degrees of freedom are coupled, and the degeneracy o
subspaces at eigenvaluelE is lifted @21,32#. The perturbative
corrections to the eigenvaluesl0, to the eigenelementsr0

l ,
01340
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ř0
l , and to the projectorsP 0

l are found by solving iteratively
the secular equations at the same orderp in the perturbative
expansion, that is

(
a50

p

L arp2a
l 5 (

a50

p

larp2a
l , ~19!

(
a50

p

řp2a
l La5 (

a50

p

lařp2a
l , ~20!

wherera
l andřa

l are thea-order corrections to the eigenele

mentsr0
l and ř0

l . The explicit forms up to second order a
derived in Appendix A. In particular,r0

l505rDm is the
steady-state density matrix at zero order, wherem is the den-
sity matrix for the external degrees of freedom in the fin
stage of the laser-cooling dynamics@33#, it describes a ther-
mal state and has the form

m5
1

11^n& S ^n&
11^n& D

a†a

, ~21!

where

^n&5Tr$a†am% ~22!

is the average phonon number at steady state.
By substituting the explicit form of the operators into E

~5!, we find that the zero- and first-order contributions to t
spectrum vanish~see discussion in Appendix B!, yielding

S~v!5S2~v!1O~h j
3!, ~23!

with

S2~v!5Re(
l

g~l!

i ~v2vL,1!2l
. ~24!

Here,g(l) is a complex-valued function, which we decom
pose for convenience intog(l)5 f (1)(l)1 f (2)(l), with

f (1)~l!5Tr$D0
†P 1

lD0r1%,

f (2)~l!5Tr$D0
†P 0

lD0r2%.

Usingr1
l , r2

l , andP 1
l , evaluated in Appendix A, and mak

ing use of relation~17!, we separate the trace termsf (1) and
f (2) into the product of the trace over the external and o
the internal (TrI$%) degrees of freedom. By applying the cy
clic properties of the trace and the completeness relation
the external degrees of freedom,(lE

PE
lE51E , we find
5-5
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f (1)~l!5
1

\2 (
lE8

FdlE,0TrE$~P E

lE8 @x,m#!x%TrI H D0
†P I

l IFV1 ,
1

l02lE82LI
D0

1

lE81LI
V1rDG J 1dlE,0TrE$~P E

lE8mx!x%

3TrI H D0
†P I

l IFV1 ,
1

l02lE82LI
D0

1

lE81LI
@V1 ,rD#G J 1dl

E8 ,0TrE$~P E
lE@x,m#!x%

3TrI H D0
† 1

l02LI
FV1 ,P I

l ID0

1

lE1LI
V1rDG J 1dl

E8 ,0TrE$~P E
lEmx!x%

3TrI H D0
† 1

l02LI
FV1 ,P I

l ID0

1

lE1LI
@V1 ,rD#G J G ,

where we have used the relation TrE$PE
lEX%5dlE,0TrE$X%. Analogously,

f (2)~l!52
1

\2
dlE,0(

lE8
FTrE$~P E

lE8mx!x%TrI H D0
†P I

l ID0L I
21FV1 ,S 1

lE81LI
@V1 ,rD# D G J 1TrE$~P E

lE8 @x,m#!x%

3TrI H D0
†P I

l ID0L I
21FV1 ,S 1

lE81LI
V1rDD G J G2

i

2\
dlE,0TrE$mx2%TrI$D0

†P I
l ID0L I

21@V2 ,rD#%.
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From the properties of the terms TrE$X% one can already se
that the eigenelements and eigenvalues ofLE contributing to
the spectrum at second order are atlE50,6 in.

In summary, the first nonvanishing contribution to t
spectrum of emission is in second order in the perturba
expansion. It can be decomposed into the sum of cur
centered at the imaginary part of the eigenvaluesl of the
Liouville operatorL, and weighted by the factorg(l). The
eigenvalues are here determined up to the second-order
rection, l5l01l21O(h j

3), wherebyl150, as shown in
Appendix A and in Ref.@32#. At zero order in the perturba
tive expansionl05l I1lE , wherel I is the eigenvalue of
the Liouvillian of a bareL transition, while the only relevan
external eigenvalues arelE50,6 in.

Below, we analyze the spectrum in detail. For later co
venience, we rewrite S(v)5Sel(v)1SM(v)1SSB(v),
where Sel(v) is the contribution of the elastic peak, atl
50, the term

SM~v!5Re (
l IÞ0,lE

g~l!

i ~v2vL,1!2l
~25!

denotes the contributions atl IÞ0, which we refer to as the
Mollow-type inelastic component@23,26#. The term

SSB~v!5Re (
l I50,

lE56 in

g~l!

i ~v2vL,1!2l
~26!

represents the contributions atl I50,lE56 in that we iden-
tify with the sidebands of the elastic peak, or Stokes, a
Stokes components of the scattered radiation.

We remark thatS2(v) does not depend on the position
the detector: the terms containing the perturbative cor
tionsD1 , D2 and their adjoints do not contribute toS(v) in
01340
e
s,

or-
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c-

second order inh j . Furthermore, the Lamb-Dicke param
etersh1 , h2 appear always in the formh1cosf1, h2cosf2,
since K2r0

l50}K2rD50 ~see Appendix B!. Therefore, the
mechanical effects in second order are solely determined
the absorption of laser photons and not by recoils due to
spontaneously emitted photons. This behavior is due to
structive quantum interference at zero order in the Lam
Dicke expansion, implying that light absorption is a firs
order process@20,34#.

1. The Mollow-type inelastic spectrum

At zero order in the Lamb-Dicke parameter, the eigenv
uesl IÞ0 determine the position and the shape of the c
tributions to the Mollow-type inelastic spectrum. Asl ap-
pears in the denominator ofSM(v), the second-order
correctionl2 can be neglected.

The trace terms over the external degrees of freedom
conveniently evaluated using the basis set correspondin
the projectors in Eq.~18!, giving

TrE$~P E
lEmx!x%5x0

2@dlE ,in~^n&11!1dlE ,2 in^n&#,

TrE$~P E
lE@x,m#!x%5x0

2@2dlE ,in1dlE ,2 in#,

TrE$x2m%5x0
2@2^n&11#, ~27!

with x05A\/2Mn. Thus, at second order in the Lamb-Dick
expansion the eigenelements ofLE determining the spectrum
are in the eigenspaces corresponding tolE50,6 in. Since
SM(v) is linear in these terms, this component of the sp
trum scales withh j

2cos2fj and is linear in the average pho
non number̂ n&.

This spectral component is constituted by the contrib
tions of the signals centered at Im$l I% and at Im$l I8%6n.
5-6
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The latter originate from the termf (1)(l) in g(l). We illus-
trate this behavior in Fig. 3, where the Mollow-type inelas
spectrum is shown for different values of the detuningd ~and
thus of the average phonon number at steady state^n&). The
frequencies Im$l I% are marked with crosses on the frequen
axis, and the arrows indicate the center frequencies Im$l I8%
of which only the sidebands are visible. In order to highlig
this splitting, we have taken borderline parameters, such
all peaks are clearly resolved. For realistic parameters,
sidebands on the left side of the spectrum are visible
shown in Fig. 2~b!.

The curves at Im$l I% can be reproduced by evaluating th
spectrum of emission of a bare three-level atom, wh
ground-state coherence has a finite lifetime@23,26#. Thus,
they can be identified with the spectrum of the photons s

FIG. 3. SpectrumS(v) in arbitrary units as a function ofv
2vL,1 in units of n. The figures are at different values of the d
tuning d, for V15V2510n, g55n, g15g2 , f150, f25p, h1

5h251024. ~a! d50.5n, corresponding to^n&530. ~b! d
53.5n, corresponding tôn&53.8. ~c! d510n, corresponding to
^n&51. In all figures, the crosses on the frequency axis indicate
positions of the frequencies Im$l I%. The arrows indicate the fre
quencies Im$l I8% of which only the sidebands appear in the spe
trum. The integrated signal of the Rayleigh peak is at higher or
in the perturbative expansion than the rest of the spectrum.
01340
t
at
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e
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tered at zero order in the Lamb-Dicke parameter, after
atom has left the ground-state coherence and before it
cesses it again. The signals centered at Im$l I8%6n are pecu-
liar. They correspond to processes where photon scatterin
accompanied by a change in the vibrational state. Lookin
the corresponding eigenelements, it follows that they st
from the inelastic processes which take the atom out of
dark state. We remark that in Fig. 2 the left pole Im$l I8% falls
at the same frequency as the left motional sideband: In f
the parameters have been here chosen, so that the frequ
of absorption along the cooling transition coincides with t
narrow resonance characterizing the excitation spect
@19,20,35#.

2. The sidebands of the elastic peak

The spectral contributions atl I50, lE56 in, allow for
a compact analytic form. Only the termf (1)(l) contributes
to g(l) in SSB(v). After some algebraic manipulation, w
write

g~lE!5TrE$@P E
lE~a1a†!m#~a1a†!%u f ~lE!u2,

where

f ~lE!5
x0

\
TrI H D0

† 1

lE2LI
@V1 ,rD#J . ~28!

The explicit form~28! is found by applying the relation (l
2LI)

215*0
`dte2(l2LI )t. Using the quantum regressio

theorem we arrive at

f ~lE!52 i
2hlEV1V2

2

V2@V214lE~ id1lE1g/2!#
, ~29!

with V25V1
21V2

2, and where we have introducedh
5x0(k1cosf12k2cosf2). The explicit form ofSSB(v) is de-
termined after evaluating the second-order correctionsl2 to
l056 in. These are found by solving the eigenvalue eq
tions ~A1! and ~A2! at l056 in. In the subspace atlE
5 i ,n, l I50, after tracing over the internal degrees of fre
dom, they read

l2m̃l25s~n!@am̃l2a†2a†am̃l2#1s~2n!@a†m̃l2a

2aa†m̃l2#1H.c., ~30!

where m̃l2 are the right eigenelements of Eq.~30! at the

eigenvaluel2. The left eigenelementsm̌̃l2 fulfill the corre-
sponding equation for the action to the left@24,25#. The co-
efficient s(n) is given by

s~n!5
1

2M\nE0

`

dt eintTrI$V1eLI tV1rD%

52h2
inV1

2V2
2

V2@V224n~ ig/21n1d!#
. ~31!

e
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We rewrites(6n)5Re@s(6n)#1 i Im@s(6n)#, and define
A65Re$s(7n)%. Substituting into Eq.~30!, we obtain the
more familiar form@21,24#

l2m̃l252 i n̄@a†a,m̃l2#1A2@2am̃l2a†2a†am̃l22m̃l2a†a#

1A1@2a†m̃l2a2aa†m̃l22m̃l2aa†#, ~32!

with n̄5Im@s(n)#1Im@s(2n)#. The corresponding eigen
values are solutions of Eq.~A8!, and have the form
@21,24,32#

l2~N,, !5 i , n̄2~2N1u,u!~A22A1!, ~33!

where the indexN50,1,2, . . . accounts for the removed de
generacy inside the eigenspace. The explicit form of the

responding left and right eigenelementsm̌̃N,,, m̃N,, can be
found in Ref.@24#. They form a complete and orthogonal s
with respect to the trace over the external degrees of f

dom, TrE$m̌̃N,,m̃N8,,8%5dN,N8d,,,8 and (N,,m̃N,,
^ m̌̃N,,

51E . In particular, the eigenelementsm̃N,,, m̌̃N,, form a
complete basis over the subspace at eigenvaluelE5 i ,n,
such that

P E
lE5 i ,n

5(
N

m̃N,,
^ m̌̃N,,.

We remark that the density operator given in Eq.~21! is right
eigenelement atN5,50, that ism5m̃0,0. Using this basis
for evaluating the trace terms over the external degree
freedom, we get

SSB~v!5Re(
,,N

u f ~lE!u2

i ~v2vL,12,n!2l2
N,,

3TrE$~a1a†!m̃N,,%TrE$m̌̃N,,~a1a†!m%.

By using the explicit form of the eigenelements in Ref.@24#
we find that only the terms atN50, ,561 contribute to the
sum, giving

SSB~v!5 (
,561

gS
2

@v2vL,12,~n1 n̄ !#21gS
2

s0 , ~34!

wheregS5A22A1 and s0 is the height at the center fre
quency and has the form@36#

s05
nV1

2V2
4

4g̃SdV4~V224n2!
. ~35!

Here, we have definedg̃S5gS/h2, which is at zero order in
the Lamb-Dicke expansion.

From Eq.~34! one sees that both sidebands of the ela
peak have the same form and are independent of the angc
of the detector with respect to the axis of the motion.
particular, they have the same Lorentzian shape, as show
the insets of Fig. 2, and are centered at the frequency6(n
01340
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t
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1n̄), wheren̄ is a shift in second order in the Lamb-Dick
parameter. We illustrate this effect in Fig. 4, where we ha
chosen suitable parameters to show this small shift m
clearly. Here,n̄ can be identified with the ac-Stark shift ari
ing from off-resonant coupling to other dipole transitions
different vibrational numbers. The widthgS of the sidebands
is at second order in the Lamb-Dicke parameter and co
sponds to the cooling rate@20#. The heights0 is in zero order
in the perturbative expansion. With some algebraic mani
lations, usinĝ n&5A1 /gS, it can be rewritten as

s05
V2

2

gV2
^n&~11^n&!. ~36!

Thus, the motional sidebands are well distinguished co
pared to the Mollow-type inelastic spectrum forh2!^n&.

3. The elastic peak

The contribution at the eigenvaluel50 corresponds to
the elastic peak, i.e., to the coherent part of the spectrum
this system its appearance is due to the mechanical effec
light: In fact, at zero order in the Lamb-Dicke expansio
there is no photon emission at steady state. We evaluate
radiation scattered at this frequency starting from express
~5!,

Sel~v!5pd~v2vL,1!Tr$D†P l50Drst%

5pd~v2vL,1!uTr$Drst%u2, ~37!

which is the well known form of the elastic peak contrib
tion @37#. The perturbative expansion ofD andrst can now
be applied for evaluating the average dipole mom
Tr$Drst%. We find the first nonvanishing contribution a
O(h j

2), such that Tr$Drst%5Tr$D0r2%1Tr$D1r1%
1O(h j

4). This signal is due to the lowest-order correctio

FIG. 4. Spectrum of resonance fluorescenceS(v) in the vicinity
of the frequency2n ~in arbitrary units! as a function of the fre-
quencyv2vL,1 in units of n. The parameters aref150, f25p,
h15h250.05, V15V258.5n, g510n, g15g2 , d515n, corre-
sponding tô n&50.2. In the inset, the Stokes component is show
The vertical dashed line indicates the position of the frequencv
2vL,152n. The maximum of the motional sideband is shifted

n̄ with respect to2n. In the inset, the whole spectrum is show
The height of the signal due to the inelastic part is here two ord
of magnitude smaller than the sidebands.
5-8
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of the Debye-Waller factor, exp(2hj
2cos2fj/2), on the tran-

sitions ucD ,n&→u3,n&→ucD ,n&, and to the coefficient
h j

2n cosfjcosc on the transitions ucD ,n&→u3,n61&
→ucD ,n&. Thus, the intensity of the radiation scattered
the elastic peak is at fourth order in the Lamb-Dicke para
eter and it depends on the angle of emission. The finite l
time of the dark state suggests also a broadened signal a
frequency. Our analysis shows that such contribution is
higher order in the perturbative expansion.

IV. SUMMARY OF THE RESULTS AND DISCUSSION

The spectrum of emission of a trapped ion, whose inter
degrees of freedom constitute aL transition driven at two-
photon resonance, is a remarkable manifestation of the
chanical effects of light: In fact, at steady state photons
emitted due to processes where the vibrational degree
freedom are excited by absorption of a photon. We h
evaluated the spectrum using perturbation theory in
Lamb-Dicke parameter. According to our results, the sig
of the emission spectrum is in second order in the Lam
Dicke expansion. We classify the spectral features into th
main contributions, which we summarize below.

At the laser frequencyvL,1 the spectrum exhibits a
d-peaked signal, visible for instance in Fig. 2, that we ide
tify with the elastic peak. This signal is at fourth order in t
perturbative expansion. This order of magnitude is und
stood, as the dipole moment at steady state scales withh j

2

;(Dx/lL)2. In fact, this signal is due to Rayleigh scatterin
processes where the initial and final state is the dark s
ucD& and the vibrational numbern is conserved. Thus, thi
excitation originates from the lowest-order mechanical c
rections to the Rabi frequency and it depends on the ang
emissionc.

At the frequenciesvL,16n one observes two narrow reso
nances. These are the motional sidebands of the elastic p
the Stokes and anti-Stokes components of the scattered
They correspond to Raman scattering where the initial
final internal state isucD& and the vibrational number i
changed by one phonon. The curves are Lorentzians of e
height and width, and are independent of the angle of de
tion c. Their dependence on the physical parameters is g
by Eq.~34! and plotted in the insets of Fig. 2. Their width
in second order in the Lamb-Dicke expansion and co
sponds with the cooling rate@21#. The height of the curves a
the center frequency scales with the average phonon num
^n& according to^n&(11^n&), so that the total intensity
emitted at this frequency is proportional toh2^n&. Finally,
the center frequencies of the sidebands are shifted from
zero-order center frequency by a contributionn̄ at second
order in the Lamb-Dicke expansion: This corresponds to
ac-Stark shift of the ground-state coherence due to the
resonant coupling with the excited state. Figure 4 shows
shift n̄ for one sideband.

The other spectral features, visible for instance in F
2~b!, can be identified with the Mollow-type inelastic spe
trum. These can be decomposed into the sum of Lore
curves, whose height scales withh2 and is linear in^n&,
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whereas the width is in zero order in the Lamb-Dicke exp
sion. Part of these features can be reproduced by evalua
the incoherent spectrum of a bareL transition driven at two-
photon resonance, whose ground-state coherence has a
decay time@23,26#. Hence, their origin can be explained wit
photon scattering at zero order in the Lamb-Dicke parame
occurring once the atom has left the dark state. Neverthe
this part of the spectrum exhibits also peculiar featur
which cannot be understood in these terms. These are in
curves which characterize the excitation spectrum of the b
L atom@35#, and which here appear shifted by the frequen
6n from their center frequency. They thus describe scat
ing processes where the vibrational number is changed
one phonon. For saturating driving fields they can be in
preted as Raman scattering processes, where the initial
is the ground-state coherenceucD& and the final state is an
other dressed state at a different vibrational number st
The linewidth of the emitted photon is then the linewidth
the corresponding dressed state transition, while the ce
frequency is the corresponding ac-Stark shift. Here, the c
ter frequencies are shifted by the trap frequencyn, since the
dark state is excited only by processes changing the vi
tional number.

Remarkably, in second order in the Lamb-Dicke expa
sion the spectrumS(v) does not depend on the position
the detector, apart from the dipole pattern of emission. T
is another consequence of the fact that at zero order in
perturbative expansion the atom at steady state is decou
from radiation because of quantum interference@34#.

Using these results, one can characterize the steady
of the motion. For instance, the measurement of the li
width of the motional sidebands gives the cooling rate of
process. The phonon number^n& at steady state can be me
sured through the ratio between the heights at the ce
frequency of the motional sideband and of one peak of
incoherent spectrum. In this way, one gets a simple equa
at second order in̂n& whose coefficients are determine
only by the laser parameters. We remark that for larger v
ues of^n& the visibility of the motional sidebands over th
Mollow-type inelastic spectrum increases. This is illustrat
in the inset of Fig. 4.

In summary, the spectrum we have evaluated allows u
gain insight into the quantum dynamics and steady state
the atom interacting with light. Our results are in agreem
with the dynamical picture presented in Sec. II. This pictu
is based on a clear separation between the two time sc
T0 , T1, on which also the validity of the perturbative expa
sion lies. Analytical estimates and numerical checks of
validity of the dynamics on this coarse-grained time sc
have been presented in Ref.@20#.

It is interesting to compare these results with the featu
found in the emission spectrum of a trapped two-level ato
In a two-level transition driven by a plane wave, the inc
herent spectrum has a contribution at zero order in the La
Dicke expansion, as at this order the internal steady stat
the system is characterized by nonvanishing occupation
the excited state. The features due to the mechanical eff
manifest here in the motional sidebands. These are nar
resonances, whose width is the cooling rate. However,
5-9
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BIENERT, MERKEL, AND MORIGI PHYSICAL REVIEW A69, 013405 ~2004!
fixed detection anglec the curves are Fano-like profiles
whose relative height varies withc ~while, once integrated
over the solid angle of emission, have Lorentz shape and
equal, being the system at steady state! @6,7#. This asymme-
try is an interference effect between Raman processes at
ond order in the Lamb-Dicke expansion@7#: Given ug&, ue&
ground and excited states of the dipole transition, the Ram
processesug,n&→ue,n&→ug,n61& and ug,n&→ue,n61&
→ug,n61& are of the same order and lead to the emission
the photon. They therefore interfere, and their interfere
signal ~the height of the sidebands! is modulated by the
emission angle.

This behavior disappears when the dipole is at the nod
a standing wave: Then, the carrier transitionug,n&→ue,n& is
suppressed and at this order only the transitionsug,n&
→ue,n61&→ug,n61& occur. Hence, both motional side
bands are Lorentz curves of equal shape, independent o
emission angle~which just affects the total height of th
signal, according to the dipole pattern of radiation!. Thus, in
this case transitions in zero order in the Lamb-Dicke exp
sion vanish because of the spatial mode structure, while l
scattering occurs because of the spatial gradient of the
intensity over the center-of-mass wave packet. Remarka
in our case transitions in zero order in the Lamb-Dicke
pansion are suppressed because of quantum interferenc
tween dipole excitation paths, and photon scattering occ
due to the phase gradient of the field over the center-of-m
wave packet.

V. CONCLUSIONS AND OUTLOOK

We have presented a theoretical study of the spectrum
fluorescence of a trapped atom whose internal degree
freedom are driven in aL configuration at two photon reso
nance. In this system, the atomic emission at steady sta
only due to the mechanical effects of the atom-photon in
action. The spectrum has been evaluated at second ord
the Lamb-Dicke expansion, i.e., in the expansion of the s
of the atomic wave packet over the laser wavelength. We
that the spectrum is characterized by two narrow resona
corresponding to the motional sidebands, i.e., the Stokes
anti-Stokes components, and by a Mollow-type inelas
spectrum, while the elastic peak is at higher order. Thro
these properties, information about the quantum dynam
and steady state of the driven atom can be extracted, like
cooling rate and the temperature, and the contributions of
individual scattering processes can be identified. Furth
more, for relatively large temperatures the sidebands of
elastic peak may be orders of magnitude larger than
other spectral signal, and the spectrum can be said to
solely composed of these two frequencies.

Our results provide an interesting insight into the und
lying physics of the mechanical effects of light-atom intera
tion. Further understanding could be gained by studying
temporal behavior of single quantum systems@4,26,27#. This
work may contribute to on-going experiments investigat
and engineering the coupling of single trapped atoms
ions with electromagnetic fields.
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APPENDIX A: PERTURBATION THEORY

The Eq.~19! to solve iteratively in the perturbative expan
sion are

L0r1
l1L1r0

l5l0r1
l1l1r0

l , ~A1!

L0r2
l1L1r1

l1L2r0
l5l0r2

l1l1r1
l1l2r0

l , ~A2!

wherer0
l satisfyL0r0

l5l0r0
l . Forl050, r05rDm, with m

given in Eq.~21!. Equation~A1! gives

~12P 0
l!r1

l52
12P 0

l

l02L0
~l12L1!r0

l , ~A3!

whereP 0
l is the zero-order projector onto the subspace

eigenvaluel, P 0
l5r0

l
^ ř0

l . Inserting Eq.~A3! in Eq. ~A2!
we obtain

~12P 0
l!r2

l52
12P 0

(0)

l02L0
F2~l12L1!

12P 0
l

l02L0
~l12L1!

1~l22L2!Gr0
l . ~A4!

Analogously, one finds the perturbative corrections to the
eigenelementsř0

l solving Eq.~20! at second order. This in
turn allows one to evaluate the perturbative corrections to
projectorsP 0

l . UsingP 1
l5r0

l
^ ř1

l1r1
l

^ ř0
l , we obtain@7#

~12P 0
l!P 1

l5
12P 0

l

l02L0
L1P 0

l , ~A5!

P 1
l~12P 0

l!5P 0
lL1

12P 0
l

l02L0
. ~A6!

The equations for the correctionsl1 , l2 to l0 are found by
multiplying Eqs.~A1! and~A2! by ř0

l on the left and taking
the trace. The resulting equations are

l15Tr$ř0
lL1r0

l%50, ~A7!

l25Tr$ř0
lL2r0

l%2Tr$ř0
l~l12L1!r1

l%

5Tr$ř0
lL2r0

l%1TrH ř0
lL1

12P 0
l

l02L0
L1r0

lJ , ~A8!

where we have used Eq.~A3! and relationř0
lL05l0ř0

l .
From Eq.~A7! it is visible thatl150 for all eigenvaluesl:
In fact, the LiouvillianL1 couples subspaces at differentlE ,
but it vanishes inside a subspace at fixedlE , P 0

lL1P 0
l50.
5-10
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APPENDIX B: CONTRIBUTIONS TO THE SPECTRUM
IN SECOND ORDER

The term at zero order in the perturbative expansion

S0~v!5(
l0

1

i ~v2vL,1!2l0
Tr$D0

†P 0
lD0r0%50

vanishes, since

Dr05r0D†50, ~B1!

as there is no excited state occupation at steady state in
order. Analogously, in first order it can be shown that

S1~v!5(
l0

1
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where each of the first three terms are equal to zero bec
of relation ~B1!. The last term is equal to zero because h
the position operatorx occurs linearly.

The nonvanishing contributions to the spectrum at sec
order are shown in Eq.~24!. All other terms vanish. For mos
of them, this can be demonstrated using Eq.~B1!. We would
like to emphasize the disappearance of the contributions

Tr$D1
†P 1

lD0r0%5Tr$D0
†P 1

lD1r0%50,

Tr$D1
†P 0

lD0r1%5Tr$D0
†P 0

lD1r1%50,

Tr$D2
†P 0

lD0r0%5Tr$D0
†P 0

lD2r0%50,

which, together withKr050, imply that the spectral signa
does not depend on the angle of emission up to second o
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