8 research outputs found

    Microwave and electrical properties of Co-Ti substituted M-type Ba hexagonal ferrite

    No full text
    The microwave characteristics of Co2+ and Ti4+ ions substituted, BaCoxTixFe(12−2x)O19 (x = 0.1, 0.3, 0.5, 0.7, 0.9) ferrite have been studied as a function of thickness, frequency and substitution. The results depict reflection loss of − 31.94 dB at 10.47 GHz in x = 0.9. The highest static electrical current is observed at lower substitution. The model accompanying microwave absorption is used to evaluate microwave absorption characteristics. The electromagnetic and static electrical characteristics are improved with the substitution of Co2+ and Ti4+ ions. The compositions for possible electromagnetic applications are also explored

    AC and DC properties of M-type

    No full text
    Microwave characterization of SrCoxTixFe(12−2x)O19 (x = 0.0, 0.2, 0.3, 0.5, 0.6, 0.7, 1.0) ferrites has been studied as a function of frequency, substitution and thickness, and static electrical current density-electric field characteristics have been investigated as a function of substitution. Microwave characteristics have been measured using power meter in the rectangular slotted waveguide and current density is measured using electrometer. The microwave absorption is evaluated using the standard available model. The results depict −11.57 dB reflection loss at 10.38 GHz in composition x = 0.6. The electrical current density decreases at lower substitution and increases at higher substitution. The substitution of Co2+ and Ti4+ ions causes enhancement of electromagnetic and static electrical properties

    Microwave characterization of

    No full text
    The microwave characteristics of Pb1−xCaxFe0.5Nb0.5O3 multiferroics (x = 0.0, 0.4, 0.45, 0.5, 0.55, 0.6), have been investigated as a function of frequency and substitution. The results depict −13.99 dB reflection loss at 11.65 GHz in composition x = 0.6. Microwave absorption is enhanced with substitution of Ca2+ ions and undoped composition 0.0 behaves as electromagnetic shield. The model governing microwave absorption is discussed and different compositions for electromagnetic applications have been suggested

    Comparison of the molecular properties of retinitis pigmentosa P23H and N15S amino acid replacements in rhodopsin

    No full text
    <div><p>Mutations in the <i>RHO</i> gene encoding for the visual pigment protein, rhodopsin, are among the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Previous studies of ADRP mutations in different domains of rhodopsin have indicated that changes that lead to more instability in rhodopsin structure are responsible for more severe disease in patients. Here, we further test this hypothesis by comparing side-by-side and therefore quantitatively two <i>RHO</i> mutations, N15S and P23H, both located in the N-terminal intradiscal domain. The <i>in vitro</i> biochemical properties of these two rhodopsin proteins, expressed in stably transfected tetracycline-inducible HEK293S cells, their UV-visible absorption, their Fourier transform infrared, circular dichroism and Metarhodopsin II fluorescence spectroscopy properties were characterized. As compared to the severely impaired P23H molecular function, N15S is only slightly defective in structure and stability. We propose that the molecular basis for these structural differences lies in the greater distance of the N15 residue as compared to P23 with respect to the predicted rhodopsin folding core. As described previously for WT rhodopsin, addition of the cytoplasmic allosteric modulator chlorin e6 stabilizes especially the P23H protein, suggesting that chlorin e6 may be generally beneficial in the rescue of those ADRP rhodopsin proteins whose stability is affected by amino acid replacement.</p></div
    corecore