3,863 research outputs found

    Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    Get PDF
    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix

    Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    Get PDF
    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign

    Limit on the CH4/CO ratio in Comet Levy (1990c) and comparisons with other comets

    Get PDF
    Near-infrared observations of comet Levy (1900c) were made on UT 4.3 and 5.3 Sep. 1990 from the United Kingdom Infrared Telescope on Mauna Kea. A scanning Fabry-Perot interferometer in combination with a cooled grating spectrometer was used to make a sensitive search for fluorescent emission from the v zub 3 band of CH4 near lambda approx. 3.3 microns. If CH4 is a parent molecule released directly from the nucleus, then the 3 sigma limit on its abundance is CH4/H2O approx. less than 0.0031, assuming that the kinetic temperature of the inner coma is approx. 50 K and that the CH4 spin species are equilibrated at a temperature approx. greater than 50 K. Since International Ultraviolet Explorer (IUE) observations of CO in Levy indicate that CO/H2O approx. 0.04 (Feldman et al.), researchers find that CH4/CO approx. less than 0.1. Infrared spectroscopic searches for CH4 in Comet Halley also yielded no positive detections; the more sensitive upper limit from the latter observations is CH4/H2O approx. less than 0.002. Since CO/H2O approx. 0.05 in Halley (not including the extended source of CO), the upper limits on the CH4/CO ratios are almost identical for comets Levy and Halley. A marginal infrared detection of the CH4 v sub 3 band in comet Wilson yielded CH4/H2O approx. 0.01 to 0.05 (Larson et al.), but there was no positive detection of CO. If the identification of the feature in the infrared spectrum of comet Wilson is correct, then that would indicate a very high CH4/CO ratio in this comet

    Detection of DNA and Poly-L-Lysine using CVD Graphene-channel FET Biosensors

    Full text link
    A graphene channel field-effect biosensor is demonstrated for detecting the binding of double-stranded DNA and poly-l-lysine. Sensors consist of CVD graphene transferred using a clean, etchant-free transfer method. The presence of DNA and poly-l-lysine are detected by the conductance change of the graphene transistor. A readily measured shift in the Dirac Voltage (the voltage at which the graphenes resistance peaks) is observed after the graphene channel is exposed to solutions containing DNA or poly-l-lysine. The Dirac voltage shift is attributed to the binding/unbinding of charged molecules on the graphene surface. The polarity of the response changes to positive direction with poly-l-lysine and negative direction with DNA. This response results in detection limits of 8 pM for 48.5 kbp DNA and 11 pM for poly-l-lysine. The biosensors are easy to fabricate, reusable and are promising as sensors of a wide variety of charged biomolecule

    Low-power photothermal self-oscillation of bimetallic nanowires

    Full text link
    We investigate the nonlinear mechanics of a bimetallic, optically absorbing SiN-Nb nanowire in the presence of incident laser light and a reflecting Si mirror. Situated in a standing wave of optical intensity and subject to photothermal forces, the nanowire undergoes self-induced oscillations at low incident light thresholds of <1 μW<1\, \rm{\mu W} due to engineered strong temperature-position (TT-zz) coupling. Along with inducing self-oscillation, laser light causes large changes to the mechanical resonant frequency ω0\omega_0 and equilibrium position z0z_0 that cannot be neglected. We present experimental results and a theoretical model for the motion under laser illumination. In the model, we solve the governing nonlinear differential equations by perturbative means to show that self-oscillation amplitude is set by the competing effects of direct TT-zz coupling and 2ω02\omega_0 parametric excitation due to TT-ω0\omega_0 coupling. We then study the linearized equations of motion to show that the optimal thermal time constant τ\tau for photothermal feedback is τ→∞\tau \to \infty rather than the widely reported ω0τ=1\omega_0 \tau = 1. Lastly, we demonstrate photothermal quality factor (QQ) enhancement of driven motion as a means to counteract air damping. Understanding photothermal effects on micromechanical devices, as well as nonlinear aspects of optics-based motion detection, can enable new device applications as oscillators or other electronic elements with smaller device footprints and less stringent ambient vacuum requirements.Comment: New references adde

    Experimental log hauling through a traditional caribou wintering area

    Get PDF
    A 3-year field experiment (fall 1990-spring 1993) showed that woodland caribou (Rangifer tarandus caribou) altered their dispersion when logs were hauled through their traditional wintering area. Unlike observations in control years 1 and 3, radio-collared caribou that had returned to the study area before the road was plowed on January 6 of the experimental year 2, moved away 8-60 km after logging activities began. Seasonal migration to Lake Nipigon islands usually peaked in April, but by February 22 of year 2, 4 of the 6 had returned. The islands provide summer refuge from predation, but not when the lake is frozen. Tracks in snow showed that some caribou remained but changed locations. They used areas near the road preferentially in year 1, early year 2, and year 3, but moved away 2-5 km after the road was plowed in year 2. In a nearby undisturbed control area, no such changes occurred. Caribou and moose partitioned habitat on a small scale; tracks showed gray wolf (Canis lupus) remote from caribou but close to moose tracks. No predation on caribou was observed within the wintering area; 2 kills were found outside it. Due to the possibility of displacing caribou from winter refugia to places with higher predation risk, log hauling through important caribou winter habitat should be minimized

    On the Distribution of a Second Class Particle in the Asymmetric Simple Exclusion Process

    Get PDF
    We give an exact expression for the distribution of the position X(t) of a single second class particle in the asymmetric simple exclusion process (ASEP) where initially the second class particle is located at the origin and the first class particles occupy the sites {1,2,...}

    Report of the panel on lithospheric structure and evolution, section 3

    Get PDF
    The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents

    Multi-norms and Banach lattices

    Get PDF
    • …
    corecore