A graphene channel field-effect biosensor is demonstrated for detecting the
binding of double-stranded DNA and poly-l-lysine. Sensors consist of CVD
graphene transferred using a clean, etchant-free transfer method. The presence
of DNA and poly-l-lysine are detected by the conductance change of the graphene
transistor. A readily measured shift in the Dirac Voltage (the voltage at which
the graphenes resistance peaks) is observed after the graphene channel is
exposed to solutions containing DNA or poly-l-lysine. The Dirac voltage shift
is attributed to the binding/unbinding of charged molecules on the graphene
surface. The polarity of the response changes to positive direction with
poly-l-lysine and negative direction with DNA. This response results in
detection limits of 8 pM for 48.5 kbp DNA and 11 pM for poly-l-lysine. The
biosensors are easy to fabricate, reusable and are promising as sensors of a
wide variety of charged biomolecule