221 research outputs found
The influence of twin boundaries on the Flux Line Lattice structure in YBaCuO: a study by Small Angle Neutron Scattering
The influence of Twin Boundaries (TB) on the Flux Line Lattice(FLL) structure
was investigated by Small Angle Neutron Scattering (SANS). YBaCuO single
crystals possessing different TB densities were studied. The SANS experiments
show that the TB strongly modify the structure of the FLL. The flux lines
meander as soon as the magnetic field makes an angle with the TB direction.
According to the value of this angle but also to the ratio of the flux lines
density over the TB density, one observes that the FLL exhibits two different
unit cells in the plane perpendicular to the magnetic field. One is the
classical hexagonal and anisotropic cell while the other is affected by an
additional deformation induced by the TB. We discuss a possible relation
between this deformation and the increase of the critical current usually
observed in heavily twinned samples.Comment: accepted for publication in Phys Rev
Magnetic moment of welded HTS samples: dependence on the current flowing through the welds
We present a method to calculate the magnetic moments of the high-temperature
superconducting (HTS) samples which consist of a few welded HTS parts. The
approach is generalized for the samples of various geometrical shapes and an
arbitrary number of welds. The obtained relations between the sample moment and
the density of critical current, which flows through the welds, allow to use
the magnetization loops for a quantitative characterization of the weld quality
in a wide range of temperatures and/or magnetic fields.Comment: RevTeX4, 4 pages, 2 figures. Submitted to Supercond. Sci. Techno
Perforated monodomain YBa 2 Cu 3 O 7-x bulk superconductors prepared by infiltration-growth process
Abstract : For various applications such as FCL, motor flyweel or bearing, ... the core of bulk superconductors need to be fully oxygenated and some defects like cracks, pores and voids suppressed, in order that the material can carry high current densities. In order to study and minimise the above defects, we have developed a new elaboration technique. YBa 2 Cu 3 O y (Y123) bulks have been prepared by combining liquid infiltration and top seed growth (ITSG) process. This process involves negligible shrinkage and an uniform distribution of Y211 inclusions. In addition, we prepare a regular perforation of the Y123 sample in view to magnify the specific surface and by then increase oxygen diffusion into the core of the material. Neutron texture analysis demonstrates the nonperturbative effect of the holes in the bulk from the orientation point of view. The advantages of the ITSG-process and of the novel perforated Y123 bulk are discussed
Cross-correlating Planck tSZ with RCSLenS weak lensing: implications for cosmology and AGN feedback
We present measurements of the spatial mapping between (hot) baryons and the total matter in the Universe, via the cross-correlation between the thermal Sunyaev–Zeldovich (tSZ)map from Planck and the weak gravitational lensing maps from theRed Cluster Sequence Lensing Survey (RCSLenS). The cross-correlations are performed on the map level where all the sources (including diffuse intergalactic gas) contribute to the signal. We consider two configurationspace correlation function estimators, ξ y–κ and ξ y–γt , and a Fourier-space estimator, Cy–κ , in our analysis. We detect a significant correlation out to 3◦ of angular separation on the sky. Based on statistical noise only, we can report 13σ and 17σ detections of the cross-correlation using the configuration-space y–κ and y–γ t estimators, respectively. Including a heuristic estimate of the sampling variance yields a detection significance of 7σ and 8σ, respectively. A similar level of detection is obtained from the Fourier-space estimator, Cy–κ . As each estimator probes different dynamical ranges, their combination improves the significance of the detection. We compare our measurements with predictions from the cosmo-OverWhelmingly Large Simulations suite of cosmological hydrodynamical simulations, where different galactic feedback models are implemented. We find that a model with considerable active galactic nuclei (AGN) feedback that removes large quantities of hot gas from galaxy groups and Wilkinson Microwave Anisotropy Probe 7-yr best-fitting cosmological parameters provides the bestmatch to the measurements. All baryonic models in the context of a Planck cosmology overpredict the observed signal. Similar cosmological conclusions are drawn when we employ a halo model with the observed ‘universal’ pressure profile
BCR and its mutants, the reciprocal t(9;22)-associated ABL/BCR fusion proteins, differentially regulate the cytoskeleton and cell motility
BACKGROUND: The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the breakpoint on chromosome 22 (the Philadelphia chromosome – Ph+) the derivative 9+ encodes either the p40((ABL/BCR) )fusion transcript, detectable in about 65% patients suffering from chronic myeloid leukemia, or the p96((ABL/BCR) )fusion transcript, detectable in 100% of Ph+ acute lymphatic leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore, compared the function of the ABL/BCR proteins with that of wild-type BCR. METHODS: We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho, Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model, and chemotaxis and endothelial transmigration in a transwell model with an SDF-1α gradient. RESULTS: Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular on the capacity to adhere to endothelial cells. CONCLUSION: Our data presented here describe for the first time an analysis of the biological function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological counterpart BCR
The role of a-axis grains in the transition to the normal state of YBa2Cu3O7−δ films and of 2G-coated conductors when induced by high electrical current densities
The influence of surface defects, in particular of a-axis grains, on the transition to the normal state induced by high current densities in YBa2Cu3O7−δ (YBCO) thin films and in a commercial 2G-coated conductor is investigated. For that purpose, the surface of the samples is observed by scanning electron microscopy and isothermal current-voltage curves are measured at different temperatures with pulsed currents up to the quenching value I*. The results show that the ratio of I* to the critical current is large if a-axis grains are not visible at the surface of the YBCO films, while it is much lower if the surface includes a-axis grains as this is the case for the coated conductor. The connection between the transition onset and the vortex dynamics, as well as the role of the a-axis grains in this process are discussed. The relation between the I* values obtained from thermal calculations and those resulting from vortex dynamics considerations is also discussed, as well as the possible consequences suggested by this work for the different applications of the coated conductors
Differential neutrino condensation onto cosmic structure
Astrophysical techniques have pioneered the discovery of neutrino mass properties. Current cosmological observations give an upper bound on neutrino masses by attempting to disentangle the small neutrino contribution from the sum of all matter using precise theoretical models. We discover the differential neutrino condensation effect in our TianNu N-body simulation. Neutrino masses can be inferred using this effect by comparing galaxy properties in regions of the universe with different neutrino relative abundance (i.e. the local neutrino to cold dark matter density ratio). In “neutrino-rich” regions, more neutrinos can be captured by massive halos compared to “neutrino-poor” regions. This effect differentially skews the halo mass function and opens up the path to independent neutrino mass measurements in current or future galaxy surveys
Studying reionization with the next generation of Lyα emitter surveys
We study the prospects for constraining the ionized fraction of the intergalactic medium (IGM) at z > 6 with the next generation of large Lyα emitter surveys. We make predictions for the upcoming Subaru Hyper Suprime-Cam (HSC) Lyα survey and a hypothetical spectroscopic survey performed with the James Webb Space Telescope (JWST). Considering various scenarios where the observed evolution of the Lyα luminosity function of Lyα emitters at z > 6 is explained partly by an increasingly neutral IGM and partly by intrinsic galaxy evolution, we show how clustering measurements will be able to distinguish between these scenarios. We find that the HSC survey should be able to detect the additional clustering induced by a neutral IGM if the global IGM neutral fraction is greater than ∼20 per cent at z = 6.5. If measurements of the Lyα equivalent widths (EWs) are also available, neutral fractions as small as 10 per cent may be detectable by looking for correlation between the EW and the local number density of objects. In this case, if it should turn out that the IGM is significantly neutral at z = 6.5 and the intrinsic EW distribution is relatively narrow, the observed EWs can also be used to construct a map of the locations and approximate sizes of the largest ionized regions. For the JWST survey, the results appear a bit less optimistic. Since such surveys probe a large range of redshifts, the effects of the IGM will be mixed up with any intrinsic galaxy evolution that is present, making it difficult to disentangle the effects. However, we show that a survey with the JWST will have a possibility of observing a large group of galaxies at z ∼ 7, which would be a strong indication of a partially neutral IGM
A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates
Phagocytosis and autophagy are typically dedicated to degradation of substrates of extrinsic and intrinsic origins respectively. Although overlaps between phagocytosis and autophagy were reported, the use of autophagy for ingested substrate degradation by nonprofessional phagocytes has not been described. Blood-separated tissues use their tissue-specific nonprofessional phagocytes for homeostatic phagocytosis. In the testis, Sertoli cells phagocytose spermatid residual bodies produced during germ cell differentiation. In the retina, pigmented epithelium phagocytoses shed photoreceptor tips produced during photoreceptor renewal. Spermatid residual bodies and shed photoreceptor tips are phosphatidylserine-exposing substrates. Activation of the tyrosine kinase receptor MERTK, which is implicated in phagocytosis of phosphatidylserine-exposing substrates, is a common feature of Sertoli and retinal pigmented epithelial cell phagocytosis. The major aim of our study was to investigate to what extent phagocytosis by Sertoli cells may be tissue specific. We analyzed in Sertoli cell cultures that were exposed to either spermatid residual bodies (legitimate substrates) or retina photoreceptor outer segments (illegitimate substrates) the course of the main phagocytosis stages. We show that whereas substrate binding and ingestion stages occur similarly for legitimate or illegitimate substrates, the degradation of illegitimate but not of legitimate substrates triggers autophagy as evidenced by the formation of double-membrane wrapping, MAP1LC3A-II/LC3-II clustering, SQSTM1/p62 degradation, and by marked changes in ATG5, ATG9 and BECN1/Beclin 1 protein expression profiles. The recruitment by nonprofessional phagocytes of autophagy for the degradation of ingested cell-derived substrates is a novel feature that may be of major importance for fundamentals of both apoptotic substrate clearance and tissue homeostasis
- …