29 research outputs found

    Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    Get PDF
    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We conclude that the MLCT excited state of [Fe(CN)4(bpy)]2- decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2′-bipyridine)3]2+ by more than two orders of magnitude

    Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    Get PDF
    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2 (dimen) 4 ] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute-solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis. © The Author(s) 201617111sciescopu

    Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine)_2(CN)_2]

    Get PDF
    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)_2(CN)_2], where bpy=2,2'-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2'-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy)_2(CN)_2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)_2(CN)_2] complement prior measurement performed on [Fe(bpy)_3]^(2+) and [Fe(bpy)_4(CN)]^(2-) in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy)_N(CN)_(6-2N)]^(2N-4), where N = 1-3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3 transition metal complexes

    Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    Get PDF
    In liquid phase chemistry dynamic solute–solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering patterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited solute. By simultaneous combination of both methods only, we can extract new information about the solvation dynamic processes unfolding during the first picosecond (ps). The measured bulk solvent density increase of 0.2% indicates a dramatic change of the solvation shell around each photoexcited solute, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with ∼1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us to directly observe the structure of the excited solute molecules well before the solvent contributions become dominant

    Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy

    Get PDF
    Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2′-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals

    Watching the dynamics of electrons and atoms at work in solar energy conversion.

    No full text
    The photochemical reactions performed by supramolecular transition metal complexes have been identified as viable routes towards conversion and strorage of solar energy into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt complexes, which belong to the large family of donor-bridge-acceptor supramolecular complexes. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the metal centers are monitored. These experiments show that the nature of the molecular bridge connecting the two metal centers is decisive in controlling the forward and backward electron transfer rates, a result supported by quantum chemistry calculations. Some implications for further improving bridged sensitizer-catalysts utilizing the presented methodology are outlined

    Ultrafast X-Ray Scattering Measurements of Coherent Structural Dynamics on the Ground-State Potential Energy Surface of a Diplatinum Molecule

    Get PDF
    We report x-ray free electron laser experiments addressing ground-state structural dynamics of the diplatinum anion Pt2POP4 following photoexcitation. The structural dynamics are tracked with <100 fs time resolution by x-ray scattering, utilizing the anisotropic component to suppress contributions from the bulk solvent. The x-ray data exhibit a strong oscillatory component with period 0.28 ps and decay time 2.2 ps, and structural analysis of the difference signal directly shows this as arising from ground-state dynamics along the PtPt coordinate. These results are compared with multiscale Born-Oppenheimer molecular dynamics simulations and demonstrate how off-resonance excitation can be used to prepare a vibrationally cold excited-state population complemented by a structure-dependent depletion of the ground-state population which subsequently evolves in time, allowing direct tracking of ground-state structural dynamics
    corecore