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We have used femtosecond resolution UV-visible and Kb x-ray emission spectroscopy

to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where

bpy¼2,20-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation.

The excited-state absorption in the transient UV-visible spectra, associated with the

2,20-bipyridine radical anion, provides a robust marker for the MLCT excited state,

while the transient Kb x-ray emission spectra provide a clear measure of intermediate

and high spin metal-centered excited states. From these measurements, we conclude

that the MLCT state of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metal-

centered quintet excited state through a short lived metal-centered triplet transient spe-

cies. These measurements of [Fe(bpy)2(CN)2] complement prior measurement

performed on [Fe(bpy)3]2þ and [Fe(bpy)(CN)4]2� in dimethylsulfoxide solution and

help complete the chemical series [Fe(bpy)N(CN)6–2N]2N-4, where N¼ 1–3. The meas-

urements confirm that simple ligand modifications can significantly change the relaxa-

tion pathways and excited state lifetimes and support the further investigation of light

harvesting and photocatalytic applications of 3d transition metal complexes. VC 2017
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INTRODUCTION

Harnessing the optical and photocatalytic properties of transition metal complexes requires

long-lived, metastable electronic excited states. Numerous 4d and 5d transition metal complexes

exhibit long-lived charge transfer excited states,1–6 but the majority of complexes utilizing

abundant 3d transition metals have very short excited state lifetimes or absorption predomi-

nantly in the UV.7–16 Unlike most 4d and 5d complexes, many 3d transition metal complexes

have exchange and correlation energies of similar magnitude to the ligand field splitting energy.

For these complexes, a number of ligand field excited states prove to be energetically accessible

from the electronic excited states generated by optical excitation and strongly influence the

non-radiative relaxation in 3d complexes.

The challenge of extending the electronic excited state lifetimes of 3d transition metal complexes

can be recast as the challenge of controlling the energetics and dynamics of internal conversion and

intersystem crossing.17,18 A series of ultrafast experimental studies have demonstrated that the tradi-

tional ordering of dynamical events in electronic excited states—intramolecular vibrational redistri-

bution, followed by internal conversion, followed by intersystem crossing—does not accurately

describe the relaxation dynamics of 3d transition metal complexes. An alternative framework is

emerging, where the coupled, non-adiabatic dynamics of electrons and nuclei control the rate of elec-

tronic excited state relaxation.19 Within this framework, two goals emerge: (1) identify the location of

conical intersections and seams between electronic states and the excited state trajectories that sample

these regions of phase space and (2) determine how to inhibit the accessibility of these intersections

and seams from the Franck-Condon region of optically allowed electronic excited states.20–25

These two goals have motivated our studies of the ultrafast electronic state relaxation dynamics

in [Fe(bpy)N(CN)6–2N],2N-4 where N¼ 1–3.26,27 In this series of molecules, the metal-to-ligand

charge transfer (MLCT) state is the lowest energy electronic excited state that can be accessed by an

optically allowed transition. In [Fe(bpy)3]2þ, optically induced spin crossover occurs within 200 fs.

This photo-excited spin crossover involves two active electrons that undergo both internal conver-

sion and intersystem crossing.8–16 The photo-induced spin crossover mechanism has been the focus

of more recent measurements and theoretical calculations. Many,12,15,28–30 though not all,10 of these

studies provide support for a stepwise spin crossover mechanism, where the MLCT excited state

transitions to a metal-centered quintet (5MC) excited state through a metal-centered triplet state

(3MC). The work of Chergui and Auboeck represents the most prominent case for direct MLCT

relaxation to the 5MC state in [Fe(bpy)3]2þ,10 though the �50 fs lifetime extracted from these UV-

visible pump-probe measurements provides a poor fit to both ultrafast x-ray absorption near edge

structure (XANES) and x-ray emission spectroscopy (XES) measurements.12,15

The large variations in the ligand field strength and symmetry of the [Fe(bpy)N(CN)6–2N]2N-4

series provide a coarse grained approach to changing MLCT excited state relaxation dynamics and

pathway.26,27,31–33 We recently demonstrated that substituting two bpy ligands in [Fe(bpy)3]2þ with

the four CN� ligands to make [Fe(bpy)(CN)4]2� leads to an MLCT excited state lifetime of 19 ps in

aprotic solvents.34 The present study of [Fe(bpy)2(CN)2] complements our prior studies of

[Fe(bpy)3]2þ and [Fe(bpy)(CN)4]2� and represents an extension of our investigations of the MLCT

relaxation dynamics in the [Fe(bpy)N(CN)6–2N]2N-4, where N¼ 1–3, a series of complexes. The moti-

vation for these studies is the systematic identification of how symmetry, ligand field strength, and

covalency dictate the dynamics and mechanisms of internal conversion and intersystem crossing in

3d transition metal complexes. The overall charge of the molecule changes, during the series, as

well, which will influence the solvation dynamics. For [Fe(bpy)2(CN)2], the absence of a charge will

influence the solvation dynamics of the molecule. The strong solute-solvent interaction between the

cyano ligands35 and hydrogen bonding solvents has an even more significant effect on solvation in

this series of complexes.36 The potential influence of solvation on the energetics and dynamics of

internal conversion and intersystem crossing in the [Fe(bpy)N(CN)6–2N]2N-4 series of complexes war-

rants systematic investigation in the future.

Characterizing the dynamics and mechanisms of internal conversion and intersystem cross-

ing requires robust identification of both the excited electronic states involved in the MLCT

relaxation dynamics, as well as the vibrational trajectories that lead to the intersections and
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seams between electronic excited states that control the rate of non-adiabatic transitions

between electronic states. Spectroscopically, we need to differentiate between the charge-

transfer and ligand field electronic excited states that participate in the spin crossover and deter-

mine the rate with which they interconvert. We achieve this objective by combining two com-

plementary probes of electronic relaxation dynamics: femtosecond resolution iron 3p–1s (Kb)

XES to measure the time evolution of the Fe spin moment37–42 and femtosecond UV-visible

spectroscopy to track the decay dynamics for the MLCT excited state via the bpy anion excited

state absorption. With this combination of x-ray and optical probes, we have determined that

the MLCT excited state of [Fe(bpy)2(CN)2] undergoes spin crossover on the 200 fs timescale

via a sequential mechanism, MLCT ! 3MC ! 5MC, analogous to spin crossover in photoex-

cited [Fe(bpy)3]2þ.

RESULTS AND DISCUSSION

Figure 1(b) shows the UV-visible absorption spectrum of [Fe(bpy)2(CN)2], which we pre-

pared using the published procedure.43 Fe Kb x-ray emission arises from 3p filling of the 1s
hole. The strong exchange interaction between electrons in the 3d and 3p levels makes Kb
x-ray emission spectroscopy (XES) sensitive to the 3d spin moment.37–42 This sensitivity can

be seen in Fig. 2(a), where the Fe Kb emission spectra for a variety of Fe compounds with dis-

tinct spin moments have been plotted. By subtracting the singlet reference spectrum from the

remaining reference spectra, the characteristic difference spectra generated by a change in Fe

FIG. 1. Molecular structure of investigated iron coordination complex (a) [Fe(bpy)2(CN)2]. Hydrogen atoms are not shown.

(b) The UV-visible absorption spectrum of [Fe(bpy)2(CN)2] in methanol.
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spin-moment can be constructed and are shown in Fig. 2(b). The dominant source of spectral

variation results from variation in spin state, making Kb XES an excellent probe of spin

dynamics prior to the onset of single shot x-ray damage observed at x-ray laser sources.44

We use the electronic ground state spectra shown in Fig. 2(a) as the model spectra for the pos-

sible excited state charge and spin state configurations of [Fe(bpy)2(CN)2]. As can be seen in

Fig. 2(b), the magnitude and shape of the difference spectra constructed from these references

provide key signatures for the MLCT excited state, 3MC excited states, and 5MC excited states.

As discussed by Zhang et al. in the context of spin crossover in [Fe(bpy)3]2þ,12 the difference

signal centered at 7054 eV has particular importance, because 3MC excited states give an

increased emission at this energy, while 5MC excited states show a decrease in emission signal.

Using ground state spectra to model the excited state spectra of distinct molecules does have

limitations that must be considered when choosing the model complexes. A variety of measure-

ments and calculated spectra have demonstrated that the Kb spectrum shows little sensitivity to

molecular symmetry for equal spin states,39,40,45 but the covalency of the metal-ligand bond

FIG. 2. (a) The Kb emission spectra of ground-state iron complexes with different spin moments: singlet ([Fe(bpy)3]2þ,

red), doublet ([Fe(bpy)3]3þ, blue), triplet (iron(II) phthalocyanine, green), quartet (iron(III) phthalocyanine chloride, red

dashed), and quintet ([Fe(phenanthroline)2(NCS)2], blue dashed). (b) Model complex difference spectra for the MLCT,
3MC and 5MC excited states constructed by subtracting the singlet model complex spectrum from the doublet, triplet and

quintet model complex spectra shown in (a). Arrow horizontal position set to 7054 eV. Adapted with permission from

Zhang et al., Chem. Sci. 8, 515 (2017). Copyright 2017 Royal Society of Chemistry.
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does have an impact on the spectrum.42 This is demonstrated most clearly for high spin ferric

iron complexes at the extremes of metal-ligand covalency42 because the Kb spectrum only

reflects the Fe contribution to the spin moment. This aspect of the Kb XES adds to the informa-

tion content of the technique but also means that molecules with similar coordination bonding

need to be chosen to model excited state spin dynamics. The experimental details can be found

in the supplementary material.

We use the complementary attributes of UV-visible absorption and Fe Kb x-ray emission

spectroscopy to track the charge and spin dynamics induced by photo-excitation. In our pump-

probe measurements, we have photo-excited the molecule in the lowest energy MLCT excited

state. Figure 3(a) shows the UV-visible pump-probe signal of [Fe(bpy)3]2þ and Fig. 3(c) for

[Fe(bpy)(CN)4]2� at the time delays of 75 fs and 1 ps. For the 1 ps time delay spectra, the

strong excited state absorption at 370 nm appears for [Fe(bpy)(CN)4]2� and not [Fe(bpy)3]2þ.

This absorption is associated with the 2,20-bipyridene radical anion and provides a clear signa-

ture of the MLCT excited state.46,47 Figure 3(b) shows the Fe Kb XES pump-probe difference

signal for [Fe(bpy)3]2þ12 and Fig. 3(d) for [Fe(bpy)(CN)4]2� at pump-probe time delays of 50

fs and 1 ps.34 The sensitivity of the Kb emission spectrum to the Fe spin moment allows us to

monitor the presence of metal centered excited states and provides an additional monitor for

the MLCT excited state since electron transfer changes the Fe spin moment from S¼ 0 to

S¼ 1/2. The combination of these methods enables a clear interpretation of the MLCT relaxa-

tion mechanism in [Fe(bpy)2(CN)2].

Figure 4(a) shows the UV-visible difference spectra measured at the time delays of 75 fs

and 1.0 ps, and Fig. 5(a) shows the Kb difference spectra measured at 50 fs and 1.0 ps time

FIG. 3. (a) Transient UV-visible absorption spectra obtained at 75 fs time delay (red curve) and 1 ps time delay (blue

curve) for [Fe(bpy)3]2þ in water. (b) Kb transient difference spectra obtained at 50-fs time delay (red circles) and 1-ps time

delay (blue square) for [Fe(bpy)3]2þ in water. (c) UV-visible pump-probe difference spectrum at 75 fs (red curve) and 1 ps

(blue curve) for [Fe(bpy)(CN)4]2- in dimethyl sulfoxide. (d) Kb transient difference spectra obtained at 50 fs time delay

(red circles) and 1 ps time delay (blue square) for [Fe(bpy)(CN)4]2- in dimethyl sulfoxide. (a) and (b) Adapted with permis-

sion from Zhang et al., Nature 509, 345 (2014). Copyright 2014 Nature Publishing Group. (c) and (d) Adapted with permis-

sion from Zhang et al., Chem. Sci. 8, 515 (2017). Copyright 2017 Royal Society of Chemistry.
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delays for 25 mM [Fe(bpy)2(CN)2] dissolved in methanol and photo-excited at 550 nm.

Consistent with [Fe(bpy)3]2þ,12 the sub-100 fs spectra show the expected signatures for the

MLCT excited state in both the UV-visible and Kb difference spectra. The 1.0 ps time delay

Kb spectrum in Fig. 5(a) provides clear evidence of ultrafast spin crossover in [Fe(bpy)2(CN)2].

The dynamics and mechanism of the spin crossover reaction will be discussed below.

We use different approaches to analyze the UV-visible and Kb XES results. These include a prin-

ciple component analysis framework based on singular value decomposition of the UV-visible differ-

ence spectra48 and model complex difference spectra for the Kb emission difference spectra. Details

of the data analysis can be found in the supplementary material. Global analysis of the principle com-

ponents returns decay associated spectra (DAS). The DAS for [Fe(bpy)2(CN)2] can be found in Fig.

4(b). When the DAS can be assigned to specific molecular species or excited states, the time depen-

dent amplitudes of the DAS provide a powerful means of characterizing excited state kinetics; distin-

guishing between spectral dynamics associated with changes in population from those associated with

intramolecular vibrational redistribution and solvation can prove challenging. This weakness can be

mitigated by thoughtful inspection of the component difference spectra and comparison to comple-

mentary transient measurements. We use a kinetic model based method for analyzing the Kb emission

difference spectra. This employs model spectra to analyze the Kb difference spectra, rather than prin-

ciple component analysis, because the amplitude of the difference spectra, not just the spectral profile,

is critical in distinguishing between different spin states.12 This approach can potentially introduce

bias in the analysis through the choice of model spectra and the kinetic model. We address this poten-

tial weakness by constructing distinct kinetic schemes and using statistical analysis to identify the

scheme most consistent with the experimental difference spectra.

FIG. 4. (a) Transient UV-visible absorption spectra obtained at 75-fs time delay (red curve) and 1-ps time delay (blue

curve) for [Fe(bpy)2(CN)2] in methanol. (b) The three decay associated spectra returned by global analysis of the data pre-

sented in panel (a) (red, green and blue curves) and inverted ground state UV visible absorption spectrum (gray curve). (c)

Kinetics of the UV visible absorption data at 370 and 560 nm (red and blue curves). Inset shows the signal at long time

scales with single-exponential fits (black curves) retuning a 256 6 4 ps lifetime.

044030-6 Kjær et al. Struct. Dyn. 4, 044030 (2017)

ftp://ftp.aip.org/epaps/struct_dyn/E-SDTYAE-4-027795


We consider two distinct mechanisms for the return of the photo-excited MLCT state to

the electronic ground state: (1) relaxation of the MLCT excited state to the ground state via a
5MC excited state, where the quintet state is formed directly from the MLCT, and (2) relaxation

of the MLCT excited state to the ground state via a 5MC excited state, where the MLCT decays

to a transient 3MC before forming the 5MC state

MLCT�!k1 5MC�!k3
G; (1)

MLCT�!k1 3MC�!k2 5MC�!k3
G: (2)

The representative differential equations and their solution can be found in the supplementary

material.

Figure 4 presents a subset of the UV-visible pump-probe data and analysis for [Fe(bpy)2(CN)2].

The full data set and analysis can be found in the supplementary material. DAS1 in Fig. 4(b) captures

the excited state absorption feature at 370 nm found in the 75 fs time delay spectrum in Fig. 4(a). The

increase in absorption at 370 nm has been associated with the 2,20-bipyridine radical anion absorption,

making this absorption feature a signature for the MLCT excited state, and the 120 6 30 fs decay con-

stant for DAS1 provides a measure of the MLCT excited state lifetime. Figure 4(c) shows the time

dependent amplitude of the pump-probe signal at 370 nm, where the ultrafast decay of the positive sig-

nal around time zero reflects the short lifetime of the MLCT excited state. Following the decay of

DAS1, DAS3 dominates the UV-visible pump-probe signal. The relatively weak amplitude of DAS2

suggests that it describes vibrational cooling of the system, and the associated lifetime of 1.5 ps,

matches well with the 2.5 ps vibrational cooling component identified in [Fe(bpy)(CN)4]2–.34 DAS3

FIG. 5. (a) Kb transient difference spectra obtained at 50 fs time delay (red circles) and 1 ps time delay (blue square) for

[Fe(bpy)2(CN)2] in methanol. (b) Time-dependent optically induced two-dimensional Kb fluorescence difference spectra

for [Fe(bpy)2(CN)2] in methanol. (c) and (d) The difference signal measured at a Kb emission energy of 7,061 eV (b) and

7,054 eV (c) for [Fe(bpy)2(CN)2] in methanol (red stars), as well as the best fit achieved for kinetic models with (blue) or

without (green dashed) a 3MC transient. The error bars in (b) and (c) reflect the standard error for the difference signal

determined from six independent measurements.
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strongly resembles the ground state absorption spectrum and is therefore assigned to ground state

bleach. This clearly demonstrates the MLCT excited state decay populates a persistent intermediate,

but the absence of any excited state absorption features in the spectrum does not allow the nature of

the long-lived intermediate to be determined from the UV-visible difference spectra. The Kb emission

difference spectra, however, allow us to definitively assign the persistent excited state signal to an

intermediate 5MC excited state.

We use the same analysis approach for the Kb emission difference spectra developed for the

[Fe(bpy)3]2þ to analyze the [Fe(bpy)2(CN)2] data.12 The time-resolved difference spectra can be

found in Figures 5(a) and 5(b), while the model fit of the difference spectra can be found in the

supplementary material. Table I lists the parameters extracted from the best fit of the experiment to

schemes (1) and (2). Given the obvious presence of photo-induced spin crossover in Fig. 5(a), we

only fit the difference spectra to the two models involving 5MC formation before returning to the

electronic ground state: the one where the MLCT decays directly to a metal centered quintet state

represented by scheme (1) and the other where the MLCT relaxes to a 5MC via a 3MC transient rep-

resented by scheme (2). Figures 5(c) and 5(d) show the time-dependent difference signal measured

at two x-ray emission energies: 7061 eV, where the difference signal is largest in Fig. 2(b), and

7054 eV, where the triplet model complex has a spectral signature clearly distinct from the MLCT

and 5MC states, as shown in Fig. 2. The fits in Figs. 5(c) and 5(d) have been determined from a

global analysis of the full time-dependent spectra, which can be found in the supplementary mate-

rial. The statistical significance of the more complex kinetic model involving the triplet transient can

be determined from an F-test comparison of the two models, as described in the supplementary

material. The reduction in residuals achieved with the model containing the triplet transient is suffi-

cient to reject the direct MLCT!5MC model with greater than 95% confidence.

The successful analysis of the experimental data relies on two constraints presented by the

model spectra shown in Fig. 2 and two constraints derived from the kinetic models. We calibrate the

spectrum and relative amplitudes of the difference signals for the MLCT, 3MC, and 5MC electronic

excited states to match those of the model complex difference spectra. We also require all x-ray

emission energies to be fit with a single time zero and all MLCT excited states to undergo spin

crossover. Inspection of the time resolved Kb difference spectra rules out the formation of any long

lived concentration of triplet states and confirms [Fe(bpy)2(CN)2] undergoes complete spin cross-

over to a 5MC excited state on a time scale similar to [Fe(bpy)3]2þ. Determining whether spin cross-

over occurs directly or through a 3MC transient requires the full data set to be fit in the same manner

as that used for [Fe(bpy)3]2þ (Ref. 12) and is described in the supplementary material. For the fit to

the direct spin crossover mechanism shown in Fig. 5(c), the fast rise in signal at 7061 eV requires a

fast rise in 5MC population. As shown in Fig. 5(d), the fast rise in the direct mechanism fit at

7061 eV also leads to a fast drop in signal at 7054 eV because the 5MC state has a negative differ-

ence signal at 7054 eV. For the fit to the sequential spin crossover mechanism also shown in Fig.

5(c), the fast rise in signal at 7061 eV can be accommodated initially by a rise in 3MC population.

Since the 3MC state does not have a negative difference signal at 7054 eV, the fast rise in 3MC popu-

lation does not lead to a fast drop at 7054 eV. The stepwise transition through the 3MC excited state

leads to a delayed onset of the drop in emission amplitude at 7054 eV relative to the rise in signal at

7061 eV, consistent with the experimental data. For the direct model, a shift in time zero to fit the

data in Fig. 5(d) would lead to a poor fit of the data in Fig. 5(c).

The legitimacy of the kinetic model used in this analysis and previously for [Fe(bpy)3]2þ has

been brought into question in the recent ultrafast K-edge x-ray absorption near edge spectroscopy

TABLE I. Time-dependent Kb emission spectra of [Fe(bpy)2(CN)2] in methanol fit with two different kinetic models.

Kinetic model

Lifetime Lifetime Time zero
Instrument response (fs)

1/k1 (fs) 1/k2 (fs) t0 (fs) r (fs) Fwhm (fs)

With 3MC intermediate 120 6 30 60 6 20 0 6 20 80 6 10 180 6 20

Without 3MC intermediate 150 6 40 10 6 15 76 6 10 180 6 20
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(XANES).15 While this study supports the exponential decay of the MLCT excited state, the

time-dependent expansion of the symmetric Fe-N bond length observed following the decay of

the MLCT state cannot be reconciled with a 3MC state that decays exponentially. The XANES

measurement can be best explained with a model involving ballistic transport through a 3MC

transient where the transition from the 3MC to the 5MC state occurs over a narrow range of Fe-N

symmetric stretch bond lengths.15 Unpublished simultaneous ultrafast XES and x-ray diffuse scat-

tering (XDS) measurements with improved time resolution strongly support this conclusion.

These new measurements for [Fe(bpy)3]2þ support the general mechanism proposed by Zhang

et al.,12 but a dynamical, rather than kinetic, model for the relaxation process is needed for

[Fe(bpy)3]2þ. A similar conclusion seems plausible for [Fe(bpy)2(CN)2]. Simultaneous ultrafast

XES and XDS measurements and ultrafast XANES measurements would clarify these issues.

CONCLUDING REMARKS

A combination of femtosecond resolution UV-visible and Kb emission spectroscopy has

allowed the robust characterization of the electronic excited state dynamics of [Fe(bpy)2(CN)2].

Based on the experimental data and analysis, we conclude [Fe(bpy)2(CN)2] undergoes ultrafast

spin crossover to a 5MC excited state, as demonstrated previously for [Fe(bpy)3]2þ. For both

complexes, relaxation from the MLCT excited state to the 5MC excited state occurs through a

short lived 3MC transient with very similar rate constants.12 The stepwise change in the Fe spin

moment during spin crossover, rather than a direct transition from the MLCT to the 5MC state,

indicates that the sequential transitions involving single electronic transitions coupled by a spin-

orbit operator have larger coupling matrix elements than the coupling for the direct transition

involving the simultaneous transition of two distinct electrons on two centers. These findings

are consistent with the computational studies of [Fe(bpy)3]2þ by Sousa et al.,29,30 where the

sequential mechanism is predicted to result in significantly faster spin crossover than the direct

mechanism. No such theoretical study has been performed on [Fe(bpy)2(CN)2]. Additional

ultrafast XANES15 measurements on [Fe(bpy)3]2þ following the work of Zhang et al. have

allowed the refinement of the spin crossover mechanism, demonstrating the limitations of a

kinetic description of the spin crossover dynamics, but still supporting the sequential mecha-

nism for photo-induced spin crossover. The necessity of a dynamical model for photo-induced

spin crossover in [Fe(bpy)2(CN)2] seems plausible, but these ultrafast XES and UV-visible

measurements lack sensitivity to these details. Most likely further ultrafast XANES, XES, and

XDS measurements would enable us to resolve these issues.

This study provides an extension of our investigations of MLCT excited state relaxation in

[Fe(bpy)N(CN)6–2N]2N-4, where N¼ 1–3, a series of Fe(II) complexes.12,34 The motivation for

these studies is the systematic identification of how symmetry, ligand field strength, and cova-

lency dictate the dynamics and mechanisms of internal conversion and intersystem crossing in

3d transition metal complexes. As expected, this series of complexes has proven to lead to a

large variety of relaxation pathways. At present, we have a firm understanding of the electronic

excited states involved in MLCT excited state relaxation and have demonstrated that simple

ligand substitution can modify MLCT lifetimes by more than two-orders of magnitude. Further

progress requires determining which vibrational motions promote the initial MLCT ! 3MC

transition. The detailed understanding of electronic excited state relaxation in 3d transition

metal based systems remains an important pathway to the rational design of Fe(II) photocata-

lytic complexes with the significantly longer MLCT lifetimes needed for this application.

SUPPLEMENTARY MATERIAL

See supplementary material for the experimental conditions and data analysis.
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