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Atomistic characterization of the active-site
solvation dynamics of a model photocatalyst
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The interactions between the reactive excited state of molecular photocatalysts and

surrounding solvent dictate reaction mechanisms and pathways, but are not readily

accessible to conventional optical spectroscopic techniques. Here we report an investigation

of the structural and solvation dynamics following excitation of a model photocatalytic

molecular system [Ir2(dimen)4]2þ , where dimen is para-diisocyanomenthane. The

time-dependent structural changes in this model photocatalyst, as well as the changes in the

solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and

simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access

to the solute–solvent pair distribution function, enabling the solvation dynamics around the

catalytically active iridium sites to be robustly characterized. Our results provide evidence for

the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability

of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of

photocatalysis.
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T
he efficiency, selectivity and rate of chemical reactions
depend critically on the reaction environment. Solvation,
the local organization of the solvent molecules around a

solute, has a central role in the description of condensed phase
chemical properties. The influence of the solvent on the solute
structure and reaction dynamics has been extensively studied1–3,
and the general success of continuum model descriptions bring
into question the importance of short ranged molecular effects4–6.
A diverse range of theoretical and simulation methods can
decompose solvation dynamics and energetics into distinct short
and long-range interactions, but few experiments provide robust
tests of these models7,8. When the driving forces for solvation
transition from physical to chemical interactions, the importance
of site-specific interactions and dynamics becomes more promi-
nent, as does the need for experimental probes that robustly
sample the dynamics of solute–solvent interactions with atomic
resolution. Here we present a femtosecond resolution hard X-ray
scattering study of the electronic excited state dynamics of the
model photocatalyst [Ir2(dimen)4]2þ (dimen¼ diisocyano-para-
menthane) in acetonitrile solution9–13. Figure 1a shows the
molecular structure, and Fig. 1b shows a schematic representation
of the experimental set-up.

The [Ir2(dimen)4]2þ system belongs to a class of d8-d8 dimeric
complexes, which include similarly bridged versions of Rh(I),
Pt(II) and Os(0) dimers9,14. For these complexes, the lowest
energy transition promotes an electron from an antibonding s�dz2

to a bonding spz orbital located in between the two metal atoms,
increasing the formal bond order between the metal atoms from 0
to 1. Excitation thus leaves both the s�dz2

and spz orbitals partially
occupied, making the excited state molecule both a better oxidant
and reductant than the ground state molecule. Since both orbitals
extend outside the molecule along the metal–metal axis, the
metal atoms become open coordination sites for photoactivated

reduction, oxidation and atom transfer reactions9,10,15,16. These
photoreactions either directly involve the solvent, or happen
in competition with active site coordination of the solvent.
In general, the nature and dynamics of such active site
solute–solvent interactions influence catalytic activity, but have
been difficult to disentangle, because prior investigations typically
relied on indirect methods such as optical spectroscopy with the
atomistic interpretation being guided by molecular dynamics
simulations17,18.

Ultrafast X-ray diffuse scattering (XDS)19–24 directly probes
the time-dependent changes in the distribution of distances
between all unique pairs of atoms21,22,25–27, a property directly
available from molecular dynamics simulations13,22. This makes
the comparison between experiment and simulation straight
forward by avoiding the often complex conversion of simulation
results to spectroscopic observables. Additionally, ultrafast
XDS accentuates significantly different dynamics than optical
spectroscopies; XDS preferentially samples the dynamics
associated with the most electron-rich atoms and directly
probes bond distances and angles, while optical spectroscopy
preferentially samples Franck-Condon active motions. Franck-
Condon analysis suffers from the fact that these motions need not
be chemically relevant and accurate electronic excited state
potential surfaces are needed to extract structural information.

The properties of ultrafast diffuse X-ray scattering make the
method an optimal approach to study the dynamics occurring
locally around the photocatalytically active Ir atoms where the
largest changes in intramolecular electronic and nuclear structure
of [Ir2(dimen)4]2þ occur10. Since the change in the XDS signal
depends on the change in the interatomic distances between pairs
of atoms and their electron density, the time resolved signal is
very sensitive to changes in the structure surrounding the electron
rich Ir atoms.
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Figure 1 | Scheme and results of the XDS experiments on [Ir2(dimen)4]2þ . (a) Shows a snapshot of [Ir2(dimen)4]2þ in acetonitrile solution from

BOMD simulations. (b) Shows the experimental set-up. (c) Shows the recorded difference scattering data and fit, each consecutive curve has been offset

by 150 e.u. for visibility. (d) Shows examples of the four components used to fit the data; The contraction signal is simulated for a 4.2 to 2.9 Å contraction

of the Ir–Ir distance with no change in the ligand twist. The ligand twist component is simulated for a 0 to 15� degree increase in the N-Ir-Ir-N ligand

dihedral twist at an Ir–Ir distance of 2.9 Å. The two solute components are extracted directly from the analysis. (e) Shows a sketch of four dynamics giving

rise to the signals presented in d.
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The ground state structure of [Ir2(dimen)4]2þ excited with
480 nm light has a 4.3 Å Ir–Ir bond length and a o5� N-Ir-Ir-N
dihedral angle11,28. As photoexcitation promotes an electron from
an antibonding to a bonding Ir–Ir orbital9, the excitation is
expected to be accompanied by a significant contraction along the
newly formed Ir–Ir bond. A previous time resolved XDS study
determined that the Ir–Ir distance contracts to 2.9 Å and the
ligand dihedral twist increases by 15� in the metastable electronic
excited state. However, the study did not resolve any
intermolecular dynamics at the coordination site, and lacked
the time resolution to resolve any intramolecular structural
dynamics11.

Herein, we apply XDS at an X-ray free-electron laser source to
follow the dynamics of photo-excited [Ir2(dimen)4]2þ in solution
on the B100 fs time scale of atomic movement within the
solution. We thus monitor the signal from structural changes in
the molecular system and its solvent shell as they happen. The
experimental analysis of the XDS data is supported by Born-
Oppenheimer Molecular Dynamics (BOMD) simulations. Both
experiment and simulation provide direct access to the solute–
solute and solute–solvent pair distribution functions, enabling
robust characterization of both molecular structural dynamics
and solvation dynamics around the catalytically active iridium
sites.

Results
Experimental approach. The present time-resolved diffuse X-ray
scattering measurements were performed at the Linac Coherent
Light Source X-ray Pump Probe instrument29. A 6 mM solution
of [Ir2(dimen)4]2þ dissolved in acetonitrile was pumped with
480 nm optical laser pulses of 70 fs duration, and the diffuse X-ray
scattering generated by the B30 fs X-ray laser probe pulses was
recorded on an area detector30 located behind the sample as
shown in Fig. 1b. The optical laser induced difference signal as a
function of time delay between pump and probe appears in
Fig. 1c. The methods section contains a detailed description of the
sample conditions, experimental set-up and the full data
acquisition and reduction scheme31.

The time dependent difference scattering signal DS(Q,t) is
presented as coloured curves in Fig. 1c, where the momentum
transfer Q ¼ 4p sin yð Þ

l is determined by the scattering angle (2y)
and X-ray wavelength (l). The difference scattering signal arises
from all structural dynamics induced by the laser pump pulse. In
the standard analysis formalism22,23,25, DS(Q,t) is described as the
sum of difference scattering components arising from changes in
the solute structure32, changes in the solvation cage structure33,
and changes in the bulk solvent structure34.

DS Q; tð Þ ¼ DSsolute Q; tð ÞþDSsolvation cage Q; tð ÞþDSbulk solvent Q; tð Þ
ð1Þ

Each of these components can be further separated into specific
molecular structural distortions and solvation processes. The
difference scattering signal is analysed by simulating the
contribution from each of these components and comparing
the sum of these contributions to the data. In analysing DS(Q,t)
(black curves Fig. 1c) we obtained a good description of the data
using five components describing excited state dynamics of the
recorded data: two solute components arising from changes in
the Ir–Ir bond length (dIr–Ir), and N-Ir-Ir-N dihedral angle
(DN-Ir-Ir-N), two solvation cage components (an initial desolvation
of the Ir atoms, followed by slower excited state coordination),
and one solvent component arising from an increase in bulk
solvent temperature (DT) caused by energy dissipation from the

photo-excited solute molecules to the solvent.

DS Q; tð Þ ¼DSdIr-Ir Q; tð ÞþDSDN-Ir-Ir-N Q; tð ÞþDSdesolvation Q; tð Þ
þDScoordination Q; tð ÞþDSDT Q; tð Þ

ð2Þ
With the contribution of the temperature increase being o5%
(see Supplementary Methods and Supplementary Figs 1–9), the
difference scattering signal is dominated by the two solute and
two solvation cage components, illustrated in Fig. 1d.

The difference scattering signal is dominated by a strong
positive feature at low Q indicative of decreasing interatomic
distances11,32. This positive feature located at QB0.6 Å� 1

increases significantly during the first few hundred
femtoseconds, followed by a sharpening and a shift to lower Q
on the picosecond timescale. The difference signal arising from
the expected structural changes of the solute (Ir–Ir contraction
and increasing dihedral twist) are presented in Fig. 1d, and both
give rise to strong positive features at low Q. The Ir–Ir
contraction gives rise to a broad positive feature at
Q¼ 0.55 Å� 1, while the ligand twist deformation results in a
sharper positive feature at Q¼ 0.4 Å� 1. The dynamics of the
signal is thus consistent with the excited state initially undergoing
a fast Ir–Ir contraction, followed by a slower N-Ir-Ir-N dihedral
angle twist. The solvation cage dynamics and interconversion
between ground state structures also contribute to the low Q
signal. Therefore, quantitative analysis of the difference scattering
signal required an iterative analysis procedure, which is outlined
in the following and described in detail in Supplementary
Methods and shown in Supplementary Figs 10–13.

Molecular structural dynamics. Within the quantitative analysis
of the XDS data, the scaled difference scattering is simulated for
each time step and evaluated against the measured data.
The signal arising from intramolecular structural dynamics is
calculated directly from a large set of DFT-optimized molecular
geometries where the Ir–Ir bond length and N-Ir-Ir-N dihedral
angle have been systematically varied. Initial predictions of
the solvation signal were extracted from quantum mechanical/
molecular mechanical simulations, and the signal from the
increase in bulk solvent temperature was taken from reference
measurements34. Since a host of concurrent excited state
structural dynamics are contributing to the difference scattering
signal on early time scales, the analysis was optimized through a
series of sequential steps, which ensured that overfitting of any
one parameter was avoided.

In the following, we describe the results of the quantitative
analysis of the difference scattering signal. Turning first to the
intramolecular dynamics of [Ir2(dimen)4]2þ , Fig. 2a shows the
measured time evolution of the average Ir–Ir contraction (red)
and the average dihedral twist of the ligand system (blue),
normalized to the deformations at 3.5 ps. Consistent with the
qualitative conclusions above, we observe a significant Ir–Ir
contraction in o300 fs, followed by an additional contraction on
the 2 ps time scale. This contraction is observed to be modulated
by a weak oscillatory feature. Simultaneously, we find the
N-Ir-Ir-N dihedral angle twisting follows roughly one picosecond
after the initial Ir–Ir bond contraction. The delayed dihedral
twisting also occurs on a 2 ps time scale. For times exceeding
3.5 ps the fitting procedure returns an excited state structure
(dIr–Ir¼ 2.92±0.05 Å and DfN-Ir-Ir-N¼ 15±3�) matching previous
synchrotron measurements obtained with 50 ps resolution11.

Recent quantum mechanical/molecular mechanical BOMD
simulations of [Ir2(dimen)4]2þ in acetonitrile13 enable the robust
interpretation of these experimental findings. Figure 2b shows
the BOMD results, averaged over 40 trajectories, for the two
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deformation modes, convolved with the time resolution of the
experiment (sIRF¼ 130 fs, see Methods section). There is
good agreement between experimental and simulated results
(Fig. 2a,b), although the experimentally determined amplitude of
the first oscillation of the Ir–Ir contraction is seen to be weaker
than predicted by the BOMD simulations, while the oscillations
appearing in the ligand twist deformation dynamics are more
pronounced (see Supplementary Fig. 2 for a comparison of the
experimental and simulated vibrational period). Taken together,
simulation and measurement significantly expand our
understanding of the intramolecular structural dynamics of
[Ir2(dimen)4]2þ compared with prior ultrafast optical
spectroscopy measurements12, which were insensitive to the
delayed and diffusive dihedral angle deformation mode and did
not provide quantitative results regarding bond lengths or angles.

Solvation dynamics. By first identifying the solute and bulk
solvent contributions to the difference scattering signal, the
residual difference signals provide a direct measure of the
structural dynamics within the solvation shell. The 500 fs and 3 ps
difference signals associated with the changes in the solvation
shell structure are presented in Fig. 3a. These experimentally
derived solvation shell signals can be directly compared with the
results of the BOMD simulations. Figure 3c shows the difference
scattering signal calculated35 from the BOMD simulations at the
same 500 fs and 3 ps time delays. The similarity between
measured and calculated solvation shell signals provides strong
support for guiding the interpretation of the measurements by the
structural findings of the simulations. For both measured and
simulated cage signals, the negative feature at Qo0.5 Å� 1, which
dominates the signal at 500 fs (Fig. 3a,c, red lines), has decreased
significantly in intensity by the 3 ps time delay (Fig. 3a,c, blue
lines). The negative feature at low Q arises from the increase in
average distance between the solvating acetonitrile molecules and
the Ir atoms due to the inward motion of the Ir atoms upon
photoexcitation. The BOMD simulations show that in the ground
state, the Ir atoms are preferentially solvated by methyl groups
held in place through electrostatic interactions between
electronegative ligand nitrogen atoms and the acetonitrile
methyl groups (see Supplementary Methods and Supplementary
Figs 14–16). We conclude this sub-ps process corresponds to
methyl group desolvation of the Ir atoms (Fig. 3d, red line) as a
consequence of photo-initiated Ir–Ir bond contraction. On the

few-picosecond time scale, the solvent cage adapts to the structure
and electronic configuration of the excited state [Ir2(dimen)4]2þ .
The hole in the s�dz2

orbital created by photoexcitation makes Ir a
stronger Lewis acid and gives rise to a specific coordination of the
Ir atoms by the N lone pair electrons of acetonitrile (Fig. 3d, blue
line). In the following, we model the experimental solvation
dynamics with the 500 fs and 3 ps solvation cage difference signals
as signatures of two distinct solvation processes. This model
provides an accurate representation of the experimental data at all
time delays (see Fig. 1c). The initial desolvation corresponds to
the preferential loss of acetonitrile methyl group solvation of the
Ir atoms. This loss does not recover, but rather the acetonitrile
molecules rotate and translate to preferentially coordinate the Ir
atoms with the cyano group. The time dependent evolution of
these solvation processes determined from the experiment appear
in Fig. 3b. This descriptive interpretation of the experiment relies
on the qualitative agreement between the experimental and
BOMD solvent cage signals shown in Fig. 3a,c.

A schematic representation of the two distinct solvation
processes appears in Fig. 3e,f. The delayed onset of the nitrogen
coordination observed both experimentally and in the BOMD
simulations reflects the large amplitude rotations and translations
acetonitrile molecules must go through to coordinate the
electronic excited state relative to the ground state. The active
site coordination processes of the excited state [Ir2(dimen)4]2þ

(blue trace in Fig. 3b) is well-described by a 1.3 ps delay followed
by a 2.0 ps single-exponential rise (see Supplementary Fig. 1).
While both coordination and dihedral angle twisting are delayed
with respect to the excitation event, the non-equilibrium
coordination process is significantly slower. The primary
difference between the measured and simulated cage response
(Fig. 3a,c) pertains to the dip and peak feature at 1.2 and 1.6 Å� 1.
As described in ‘Supplementary Methods and shown in
Supplementary Figs 5–9, the strength of this Q-dependent
modulation can be correlated to changes in the angle between
the coordinating nitrile group and the Ir–Ir axis indicating that
the BOMD simulations underestimate the axial alignment
between coordinating acetonitrile and the Ir–Ir axis in the excited
state. Asides from this deviation, all experimental predictions on
the solvation dynamics provided by the BOMD calculations (both
in terms of overall signal shape and temporal evolution) have
been identified in the XDS data. Thus while XDS data alone does
not provide the ability to differentiate between the cyano nitrogen
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determined from the XDS analysis. The full curves show the 15-point (B120 fs) smoothed result, with the parameter uncertainty being estimated
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and methyl solvation, such mechanistic insights and atomic
specificity can be provided by the inclusion of statistically robust
BOMD simulations in the XDS analysis.

Discussion
The observed solvation dynamics in acetonitrile differ signifi-
cantly from those measured with more traditional ultrafast optical
probing of solvation dynamics initiated by photoexcitation of
organic dyes. The archetypical polar solvation dynamics in
acetonitrile extracted from ultrafast optical spectroscopy observe
dynamics dominated by the rotational response of acetonitrile
with the slowest dynamics occurring on a sub-ps time scale4,36,37.
This well-established picture does not apply to [Ir2(dimen)4]2þ

because the perturbation induced by photo-excitation of
[Ir2(dimen)4]2þ does not change the dipole moment of the
complex but significantly changes the local solvation structure
surrounding the Ir atoms. Transitioning from the solvation
structure of the electronic ground state to that of the excited state
requires large translational motions strongly coupled to rotations,
leading to much slower dynamics than those associated with the
standard picture of solvation in acetonitrile. By combing ultrafast
XDS with BOMD simulation, we have been able to characterize
and assess these complex structure dynamics with atomic-site
specificity. We believe that the combined use of statistically robust
BOMD simulations and ultrafast XDS will provide a powerful
approach to the further development of a truly molecular-scale
view of solvation. Such molecular-scale atomistic information,
can be supplemented by element specific characterization of
excited state electronic configuration with X-ray emission
and X-ray absorption measurements, which can be recorded
simultaneously with XDS24,33. The combination of these
complementary X-ray methods presents the opportunity to map
photocatalysis processes with unprecedented detail.

Methods
Materials. The 6 mM [Ir2(dimen)4]2þ sample was synthesized by direct
mixing of 1,8-diisocyano-paramenthane (dimen) and Ir2Cl2(COD)2

(COD¼ 1,5-cyclooctadiene) in a 4:1 ratio in degassed acetonitrile in a glovebox.
The sample integrity was monitored by continuously measuring the absorption
spectrum during the X-ray experiment.

Experimental X-ray set-up. The time-resolved scattering measurements were
performed at the X-ray pump-probe instrument at the Linac Coherent Light
Source29.

The sample, consisting of 6 mM Ir2(dimen)4
2þ in acetonitrile solution, was

pumped though a closed-loop system with a 100 mm nozzle (Kyburtz) producing a
fast-flowing, flat sample sheet in the sample/beam interaction region with full
sample refresh between successive pump/probe events (120 Hz). A gear pump
ensured continuous refresh of the probed sample volume from a 80 ml reservoir
kept under He atmosphere. The nozzle and catcher were housed in a He-filled
aluminum sample chamber with a kapton-covered window allowing the scattered
X-ray photons to exit the chamber. The scattered X-rays were collected at
scattering angles between 3 and 70 degrees corresponding to a Q-range of 0.2 to
4.5 Å� 1 utilizing the Cornell-SLAC Pixel Array Detector (CSPAD v1.2) (ref. 38).
The sample was excited with 480 nm vertically polarized laser pulses, with B70 fs
FWHM duration, generated by an OPA from the 800 nm fundamental of a
Ti:sapphire laser. The optical laser spot size was 255� 255mm (FWHM) and the
power was 25 mJ per pulse measured at the sample position.

The 9.5 keV B0.3% bandwidth X-ray pulses were used to probe the sample
after pumping with the optical laser. The time delay, Dt, of the arrival of the optical
laser relative to the X-ray probe was varied in order to monitor the change in the
scattering signal as a function of the delay.

The shot-to-shot fluctuations in the relative timing between X-ray and optical
pulses were monitored for each pump/probe event using the so-called Timing Tool
for timing diagnostic. This timing diagnostic tool is based on optical detection of
X-ray generated carriers in a Si3N4 thin film, and is described in detail elsewhere39.

Data treatment. The shot-to-shot fluctuations in X-ray energy and intensity and
the resulting detector response was characterized and subtracted31 as well as
corrected for spatial corrections such as polarization, solid angle coverage and
absorption through the liquid sheet. Finally, difference scattering curves are
produced as a function of wavevector transfer and time delay, see Supplementary
Methods.
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Figure 3 | Solvation dynamics of photoexcited [Ir2(dimen)4]2þ in acetonitrile. (a) Solvation cage signal extracted from the difference scattering data

recorded at time delays of 500 fs and 3 ps. (b) Evolution of the two experimentally determined solvation components. Full curves show the 15-point

smoothed result, with the uncertainty being estimated by the point-to-point variation in the fit shown as transparent curves. (c) Simulated difference
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fraction to facilitate comparison with cage term extracted from data. (d) Change in coordination number (CN) of the Ir atoms, by the methyl and nitrogen

groups of the acetonitrile solvent after the excitation as predicted by the BOMD simulations (note that the methyl coordination change is negative).

(e,f) Schematic depiction of the processes giving rise to the solvation signal measured in the difference scattering data; (e) An initial loss of solvation of the

Ir atoms of [Ir2(dimen)4]2þ by the methyl groups of the acetonitrile solvent and (f) a coordination of the Ir atoms of the excited state [Ir2(dimen)4]2þ by

the nitrogen groups of the acetonitrile solvent.
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The instrument response function (IRF) of the experiment was estimated by
convoluting the kinetics extracted for the change in Ir–Ir distance estimated
through the BOMD calculations with a Gaussian response function and then
minimizing the residual between the simulated and measured contraction as a
function of this IRF width. This procedure resulted in an IRF with s¼ 130±20 fs.

An IRF of 130 fs is in good agreement with the expected B1 fsmm� 1 temporal
broadening due to the combination of the velocity mismatch between the pump- and
probe pulses as they traverse the 100 um liquid jet, the 70 fs FWHM of the laser pulse
and the 30 fs FWHM of the X-ray pulse, resulting in an expected IRF of 125 fs.

Data availability. All relevant data are available from the authors upon request.
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