731 research outputs found

    Surveillance imaging of grade 1 astrocytomas in children: can duration and frequency of follow-up imaging and the use of contrast agents be reduced?

    Get PDF
    Purpose: The optimum strategy for the surveillance of low-grade gliomas in children has not been established, and there is concern about the use of gadolinium-based contrast agents (GBCAs), particularly in children, due to their deposition in the brain. The number of surveillance scans and the use of GBCAs in surveillance of low-risk tumours should ideally be limited. We aimed to investigate the consistency and utility of our surveillance imaging and also determine to what extent the use of GBCAs contributed to decisions to escalate treatment in children with grade 1 astrocytomas. / Methods: This was a retrospective single-centre study at a tertiary paediatric hospital. All children with a new diagnosis of a non-syndromic World Health Organization (WHO) grade 1 astrocytoma between 2007 and 2013 were included, with surveillance imaging up to December 2018 included in analysis. The intervals of surveillance imaging were recorded, and imaging and electronic health records were examined for decisions related to treatment escalation. / Results: Eighty-eight patients had 690 surveillance scans in the study period. Thirty-one patients had recurrence or progression leading to treatment escalation, 30 of whom were identified on surveillance imaging. The use of GBCAs did not appear to contribute to multidisciplinary team (MDT) decisions in the majority of cases. / Conclusion: Surveillance imaging could be reduced in number and duration for completely resected cerebellar tumours. MDT decisions were rarely made on the basis of post-contrast imaging, and GBCA administration could therefore potentially be restricted in the setting of surveillance of grade 1 astrocytomas in children

    Herschel imaging of the dust in the Helix Nebula (NGC 7293)

    Get PDF
    In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Images at 70, 160, 250, 350, and 500 micron were obtained with the PACS and SPIRE instruments on board the Herschel satellite. The broadband maps show the dust distribution over the main Helix nebula to be clumpy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel, IRAS, and Planck flux values. The emissivity index of 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 micron and the flux measurement agree with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 0.0035 solar mass at a distance of 216 pc. The temperature map shows dust temperatures between 22 and 42 K, which is similar to the kinetic temperature of the molecular gas, strengthening the fact that the dust and gas co-exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX, Hbeta) and molecular hydrogen component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.Comment: 8 pages, 9 figures, revised version A&A in pres

    The Electron Energy Distribution in the Hotspots of Cygnus A: Filling the Gap with the Spitzer Space Telescope

    Full text link
    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected from the literature, our observations allow for detailed modeling of the broad-band emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity 170 muG in spot A, and 270 muG in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots' magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100 MeV up to 100 GeV, and that the spectral break corresponds almost exactly to the proton rest energy of 1 GeV. We argue that the shape of the electron continuum reflects two different regimes of the electron acceleration process at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption effects. In this picture the protons' inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies >100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.Comment: 29 pages, 8 figures and 2 tables included. Accepted for publication in Ap

    Benthic response to sedimentation events during autumn to spring at a shallow-water station in the Western Kiel Bight

    Get PDF
    The response of the benthos to the break up of anoxia in the Kiel Bight (Western Baltic Sea), and to three succeeding events of “external” food supply, consisting of a settled autumn plankton bloom, resuspended matter and macrophyte input during winter, and of a sedimented spring phytoplankton bloom, is described on a community level. The first input of oxygen broke up anoxic conditions and made stored food resources available to decomposition. This “internal” food supply, mainly consisting of protein (folin positive matter), was followed by a drastic increase in heat production and ATP-biomass and caused a period of low redox potential, which lasted for several weeks. During this phase, a plankton bloom (dinoflagellates and diatoms) settled to the sea floor. Although there was an immediate response of benthic activity, this food input was not completely consumed by the strongly disturbed benthic community. During winter resuspended matter and the input of macrophyte debris caused another maximum in benthic activity and biomass despite the low temperature. The response to sedimentation of cells from a diatom bloom during mid March was also without any time lag and was consumed within 5–6 wk. A comparison of the amount of particles collected in a sediment trap with the increase of organic matter in the sediment demonstrated that the sediment collected four times (autumn) and seven to eight times (spring) more than measured by the sediment trap. Strong indications of food limitation of benthic activity were found. During autumn and winter these indications were caused more by physical than by biological processes. The three events of “external” food supply caused a temporary shift in the type of metabolism towards fermentation processes and reduced the redox potential. In spring the development of the benthic community was still being strongly influenced by the events of the preceding summer and autumn

    Wide-field global VLBI and MERLIN combined monitoring of supernova remnants in M82

    Full text link
    From a combination of MERLIN (Multi-Element Radio-Linked Interferometer Network) and global VLBI (Very Long Baseline Interferometry) observations of the starburst galaxy M82, images of 36 discrete sources at resolutions ranging from ~3 to ~80 mas at 1.7 GHz are presented. Of these 36 sources, 32 are identified as supernova remnants, 2 are HII regions, and 3 remain unclassified. Sizes, flux densities and radio brightnesses are given for all of the detected sources. Additionally, global VLBI only data from this project are used to image four of the most compact radio sources. These data provide a fifth epoch of VLBI observations of these sources, covering a 19-yr time-line. In particular, the continued expansion of one of the youngest supernova remnants, 43.31+59.3 is discussed. The deceleration parameter is a power-law index used to represent the time evolution of the size of a supernova remnant. For the source 43.31+59.3, a lower limit to the deceleration parameter is calculated to be 0.53+/-0.06, based on a lower limit of the age of this source.Comment: 31 pages, 12 figures, 7 table

    A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant

    Get PDF
    Using the 3.5-m Herschel Space Observatory, imaging photometry of Cas A has been obtained in six bands between 70 and 500 μm with the PACS and SPIRE instruments, with angular resolutions ranging from 6 to 37”. In the outer regions of the remnant the 70-μm PACS image resembles the 24-μm image Spitzer image, with the emission attributed to the same warm dust component, located in the reverse shock region. At longer wavelengths, the three SPIRE bands are increasingly dominated by emission from cold interstellar dust knots and filaments, particularly across the central, western and southern parts of the remnant. Nonthermal emission from the northern part of the remnant becomes prominent at 500 μm. We have estimated and subtracted the contributions from the nonthermal, warm dust and cold interstellar dust components. We confirm and resolve for the first time a cool (~35 K) dust component, emitting at 70-160 μm, that is located interior to the reverse shock region, with an estimated mass of 0.075

    Herschel observations of embedded protostellar clusters in the Rosette Molecular Cloud

    Get PDF
    The Herschel OB young stellar objects survey (HOBYS) has observed the Rosette molecular cloud, providing an unprecedented view of its star formation activity. These new far-infrared data reveal a population of compact young stellar objects whose physical properties we aim to characterise. We compiled a sample of protostars and their spectral energy distributions that covers the near-infrared to submillimetre wavelength range. These were used to constrain key properties in the protostellar evolution, bolometric luminosity, and envelope mass and to build an evolutionary diagram. Several clusters are distinguished including the cloud centre, the embedded clusters in the vicinity of luminous infrared sources, and the interaction region. The analysed protostellar population in Rosette ranges from 0.1 to about 15 Msun with luminosities between 1 and 150 Lsun, which extends the evolutionary diagram from low-mass protostars into the high-mass regime. Some sources lack counterparts at near- to mid-infrared wavelengths, indicating extreme youth. The central cluster and the Phelps & Lada 7 cluster appear less evolved than the remainder of the analysed protostellar population. For the central cluster, we find indications that about 25% of the protostars classified as Class I from near- to mid-infrared data are actually candidate Class 0 objects. As a showcase for protostellar evolution, we analysed four protostars of low- to intermediate-mass in a single dense core, and they represent different evolutionary stages from Class 0 to Class I. Their mid- to far-infrared spectral slopes flatten towards the Class I stage, and the 160 to 70um flux ratio is greatest for the presumed Class 0 source. This shows that the Herschel observations characterise the earliest stages of protostellar evolution in detail.Comment: Astronomy & Astrophysics letter, 6 pages, 4 figures, accepted for publication in the Special Issue for Herschel first result
    corecore