80 research outputs found

    Complex critical exponents for percolation transitions in Josephson-junction arrays, antiferromagnets, and interacting bosons

    Full text link
    We show that the critical behavior of quantum systems undergoing a percolation transition is dramatically affected by their topological Berry phase 2πρ2\pi\rho. For irrational ρ\rho, we demonstrate that the low-energy excitations of diluted Josephson-junctions arrays, quantum antiferromagnets, and interacting bosons are spinless fermions with fractal spectrum. As a result, critical properties not captured by the usual Ginzburg-Landau-Wilson description of phase transitions emerge, such as complex critical exponents, log-periodic oscillations and dynamically broken scale-invariance.Comment: revised version accepted for publication in Phys. Rev. Let

    Characterization of a 220^{220}Rn source for low-energy electronic recoil calibration of the XENONnT detector

    Full text link
    Low-background liquid xenon detectors are utilized in the investigation of rare events, including dark matter and neutrinoless double beta decay. For their calibration, gaseous 220^{220}Rn can be used. After being introduced into the xenon, its progeny isotope 212^{212}Pb induces homogeneously distributed, low-energy (<30<30 keV) electronic recoil interactions. We report on the characterization of such a source for use in the XENONnT experiment. It consists of four commercially available 228^{228}Th sources with an activity of 55 kBq. These sources provide a high 220^{220}Rn emanation rate of about 9 kBq. We find no indication for the release of the long-lived 228^{228}Th above 1.7 mBq. Though an unexpected 222^{222}Rn emanation rate of about 3.6 mBq is observed, this source is still in line with the requirements for the XENONnT experiment.Comment: 8 pages, 5 figure

    Early Science Education – Goals and Process-Related Quality Criteria for Science Teaching

    Get PDF
    Scientific contributions authored by distinguished experts from the field of early education are published periodically within the framework of the series Scientific Studies on the Work of the “Haus der kleinen Forscher” Foundation. This publication series serves to foster informed dialogue between the Foundation, scientists, and practitioners with the aim of giving all early childhood education and care centres, after-school centres, and primary schools in Germany scientifically sound support in fulfilling their early education mandate. This fifth volume in the series focuses on goals of science education at the level of the children, the early childhood professionals, and the pedagogical staff at after-school centres and primary schools, and on process-related quality criteria for science teaching at pre-primary and primary level. In their expert reports, Yvonne Anders, Ilonca Hardy, Sabina Pauen, Beate Sodian, and Mirjam Steffensky specify pedagogical content dimensions of the goals of early science education at pre-primary and primary school age. In addition to theoretically underpinning these goals, the authors present instruments for their assessment. In his expert report, Jörg Ramseger formulates ten quality criteria for science teaching. Early childhood professionals and pedagogical staff at after-school centres and primary schools can draw on these process-related criteria when planning lessons and conducting self-evaluations of science learning opportunities at pre-primary and primary level. The concluding chapter of the volume describes the implementation of these expert recommendations in the substantive offerings of, and the accompanying research on, the “Haus der kleinen Forscher“ Foundation

    Quantitative multilevel analysis of central metabolism in developing oilseeds of oilseed rape during in vitro culture

    Get PDF
    Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. Overall, we observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Quantitative data were also used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 39,59-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism

    Seed architecture shapes embryo metabolism in oilseed rape

    Get PDF
    Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant highlight conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase-bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro- versus in planta-grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space

    Upregulation of Trem2 expression occurs exclusively on microglial contact with plaques

    Get PDF
    Using spatial cell-type-enriched transcriptomics, we compare plaque-induced gene (PIG) expression in microglia touching plaques, neighboring plaques, and far from plaques in 18-month-old APPNLF/NLF knock-in mice with and without the Alzheimer’s disease risk mutation Trem2R47H/R47H. We report that, in AppNLF/NLF mice, expression of 35/55 PIGs, is exclusively upregulated in microglia that are touching plaques. In 7 PIGs including Trem2 this upregulation is prevented by the Trem2R47H/R47H mutation. Unlike in young mice, knockin of the Trem2R47H/R47H mutation does not significantly decrease the Trem2 expression but decreases protein levels by 20% in the absence of plaques. On plaques, despite the mutation preventing increased gene expression, TREM2 protein levels increased by 1.6-fold (compared to 3-fold with Trem2WT/WT) and microglial density increased 20-fold compared to 30-fold. Hence microglia must touch plaques before Trem2 gene expression is increased but small changes in protein expression can increase microglia density without a change in gene expression

    Dichotomy between in-plane magnetic susceptibility and resistivity anisotropies in extremely strained BaFe₂As₂

    Get PDF
    High-temperature superconductivity in the Fe-based materials emerges when the antiferromagnetism of the parent compounds is suppressed by either doping or pressure. Closely connected to the antiferromagnetic state are entangled orbital, lattice, and nematic degrees of freedom, and one of the major goals in this field has been to determine the hierarchy of these interactions. Here we present the direct measurements and the calculations of the in-plane uniform magnetic susceptibility anisotropy of BaFe2As2, which help in determining the above hierarchy. The magnetization measurements are made possible by utilizing a simple method for applying a large symmetry-breaking strain, based on differential thermal expansion. In strong contrast to the large resistivity anisotropy above the antiferromagnetic transition at TN, the anisotropy of the in-plane magnetic susceptibility develops largely below TN. Our results imply that lattice and orbital degrees of freedom play a subdominant role in these materials

    Plaque contact and unimpaired Trem2 is required for the microglial response to amyloid pathology

    Get PDF
    Using spatial cell-type-enriched transcriptomics, we compare plaque-induced gene (PIG) expression in microglia-touching plaques, neighboring plaques, and far from plaques in an aged Alzheimer’s mouse model with late plaque development. In 18-month-old APPNL-F/NL-F knockin mice, with and without the Alzheimer’s disease risk mutation Trem2R47H/R47H, we report that expression of 38/55 PIGs have plaque-induced microglial upregulation, with a subset only upregulating in microglia directly contacting plaques. For seven PIGs, including Trem2, this upregulation is prevented in APPNL-F/NL-FTrem2R47H/R47H mice. These TREM2-dependent genes are all involved in phagocytic and degradative processes that we show correspond to a decrease in phagocytic markers and an increase in the density of small plaques in Trem2-mutated mice. Furthermore, despite the R47H mutation preventing increased Trem2 gene expression, TREM2 protein levels and microglial density are still marginally increased on plaques. Hence, both microglial contact with plaques and functioning TREM2 are necessary for microglia to respond appropriately to amyloid patholog

    A silent cry for leadership : organizing for leading (in) clusters

    Get PDF
    Leadership research so far has neglected clusters as a particular context for leadership, while research on networks and clusters has hardly studied leadership issues. This paper fills this dual gap in the abundant research on leadership on the one hand and on networks/clusters on the other by investigating leadership in photonics clusters from a structuration perspective. Apart from giving an insight into the variety and patterns of leadership practices observed, the paper addresses the dilemma that regional innovation systems such as clusters usually have a critical need of some kind of leadership, but that neither individual nor organizational actors wish to be led. This dilemma can only be ‘managed’ by organizing for leading (in) clusters in a certain way

    Cellular plasticity in response to suppression of storage proteins in the Brassica napus embryo

    Get PDF
    The tradeoff between protein and oil storage in oilseed crops has been tested here in oilseed rape (Brassica napus) by analyzing the effect of suppressing key genes encoding protein storage products (napin and cruciferin). The phenotypic outcomes were assessed using NMR and mass spectrometry imaging, microscopy, transcriptomics, proteomics, metabolomics, lipidomics, immunological assays, and flux balance analysis. Surprisingly, the profile of storage products was only moderately changed in RNA interference transgenics. However, embryonic cells had undergone remarkable architectural rearrangements. The suppression of storage proteins led to the elaboration of membrane stacks enriched with oleosin (sixfold higher protein abundance) and novel endoplasmic reticulum morphology. Protein rebalancing and amino acid metabolism were focal points of the metabolic adjustments to maintain embryonic carbon/nitrogen homeostasis. Flux balance analysis indicated a rather minor additional demand for cofactors (ATP and NADPH). Thus, cellular plasticity in seeds protects against perturbations to its storage capabilities and, hence, contributes materially to homeostasis. This study provides mechanistic insights into the intriguing link between lipid and protein storage, which have implications for biotechnological strategies directed at improving oilseed crops
    • 

    corecore