2,230 research outputs found

    The electromagnetic environment in CFC structures

    Get PDF
    Extensive measurements of induced voltages and currents were made using a CFC (carbon fiber composites) horizontal stabilizer from the A320 as a test bed. The work was done to investigate the efficacy of various protection schemes to reduce the magnitudes of the induced voltages and validate a computer program INDCAL. Results indicate that a good understanding of the various induced voltage mechanisms including the long wave effect due to current redistribution was obtained

    Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    Get PDF
    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures

    A new approach to equipment testing

    Get PDF
    Considerable controversy has arisen during the recent discussions over a new version of the RTCA DO160C/ED 14C Section 22 document at the European Committee for Aviation Electronics. Section 22 is concerned with lightning waveform tests to equipment. Investigations of some of these controversies with circuit analysis and measurements indicate the impedance characteristics required of the transient generators and the possibility of testing to a voltage limit even for current waveforms

    Review of top of rail friction modifier tribology

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis Group.The aim of this paper was to review the current state of research for top of rail friction modifiers (TORFM). In the railway industry, friction modifiers is a catch all term for a wide range of products applied for different purposes which has led to confusion. It is hoped that recently published definitions will aid industry to a better understanding of the different products and how they function. The benefits of friction modifiers are well understood with a large body of research supporting the benefits. Comparatively, there is a lot less knowledge of the optimum amount of product to achieve the benefits or how far down the track from an application site the benefit will be seen. Modelling of the products is another area where there is little research, with most of the modelling papers found focussing on dry wheel–rail contact due to the complexity of introducing a third-body layer to a friction force model. Furthermore, only one paper was found which relates how friction modifiers are affected by contaminants or other applied products such as lubricants. With many different products applied to wheels and rail for different purposes, understanding their interaction is key. At the time of this review, there are currently no standards that prescribe how TORFM should behave although the European Committee for Standardisation is currently developing them at the moment. This review has also attempted to appraise the research against a set of criteria. Depending on how many of the criteria the piece of research filled, it was categorised as A, B or C. It was found that most of the research was of category, this was mainly due to only one test method being used or the scale presented. Category A research incorporated modelling or multiple test-scales to support the results presented

    Demonstration of dynamic thermal compensation for parametric instability suppression in Advanced LIGO

    Get PDF
    Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an Advanced LIGO detector. Annular ring heaters that compensate central heating are used to tune the optical mode away from multiple problematic mirror resonance frequencies. We develop a single-cavity approximation model to simulate the optical beat note frequency during the central heating and ring heating transient. An experiment of dynamic ring heater tuning at the LIGO Livingston detector was carried out at 170 kW circulating power and, in agreement with our model, the third order optical beat note is controlled to avoid instability of the 15 and 15.5 kHz mechanical modes. We project that dynamic thermal compensation with ring heater input conditioning can be used in parallel with acoustic mode dampers to control the optical mode transient and avoid parametric instability of these modes up to Advanced LIGO\u27s design circulating power of 750 kW. The experiment also demonstrates the use of three mode interaction monitoring as a sensor of the cavity geometry, used to maintain theg-factor product tog(1)g(2)= 0.829 +/- 0.004

    Endoscopic tri-modal imaging for surveillance in ulcerative colitis: randomised comparison of high-resolution endoscopy and autofluorescence imaging for neoplasia detection; and evaluation of narrow-band imaging for classification of lesions

    Get PDF
    Background: Endoscopic tri-modal imaging (ETMI) incorporates white light endoscopy (WLE), autofluorescence imaging (AFI) and narrow-band imaging (NBI). Aims: To assess the value of ETMI for the detection and classification of neoplasia in patients with longstanding ulcerative colitis. Design: Randomised comparative trial of tandem colonoscopies. Setting: Academic Medical Centre Amsterdam, Netherlands. Patients and methods: Fifty patients with ulcerative colitis underwent surveillance colonoscopy with ETMI. Each colonic segment was inspected twice, once with AFI and once with WLE, in random order. All detected lesions were inspected by NBI for Kudo pit pattern analysis and additional random biopsies were taken. Main outcome measures: Neoplasia miss-rates of AFI and WLE, and accuracy of the Kudo classification by NBI. Results: Among patients assigned to inspection with AFI first (n = 25), 10 neoplastic lesions were primarily detected. Subsequent WLE detected no additional neoplasia. Among patients examined with WLE first (n = 25), three neoplastic lesions were detected; subsequent inspection with AFI added three neoplastic lesions. Neoplasia miss-rates for AFI and WLE were 0% and 50% (p = 0.036). The Kudo classification by NBI had a sensitivity and specificity of 75% and 81%; however, all neoplasia was coloured purple on AFI (sensitivity 100%). No additional patients with neoplasia were detected by random biopsies. Conclusion: Autofluorescence imaging improves the detection of neoplasia in patients with ulcerative colitis and decreases the yield of random biopsies. Pit pattern analysis by NBI has a moderate accuracy for the prediction of histology, whereas AFI colour appears valuable in excluding the presence of neoplasia. Trial registration number: ISRCTN0527274

    Web-based multimodal graphs for visually impaired people

    Get PDF
    This paper describes the development and evaluation of Web-based multimodal graphs designed for visually impaired and blind people. The information in the graphs is conveyed to visually impaired people through haptic and audio channels. The motivation of this work is to address problems faced by visually impaired people in accessing graphical information on the Internet, particularly the common types of graphs for data visualization. In our work, line graphs, bar charts and pie charts are accessible through a force feedback device, the Logitech WingMan Force Feedback Mouse. Pre-recorded sound files are used to represent graph contents to users. In order to test the usability of the developed Web graphs, an evaluation was conducted with bar charts as the experimental platform. The results showed that the participants could successfully use the haptic and audio features to extract information from the Web graphs

    Magnetic resonance diffusion tensor microimaging reveals a role for Bcl-x in brain development and homeostasis

    Get PDF
    A new technique based on diffusion tensor imaging and computational neuroanatomy was developed to efficiently and quantitatively characterize the three- dimensional morphology of the developing brains. The technique was used to analyze the phenotype of conditional Bcl-x knock-out mice, in which the bcl-x gene was deleted specifically in neurons of the cerebral cortex and hippocampus beginning at embryonic day 13.5 as cells became postmitotic. Affected brain regions and associated axonal tracts showed severe atrophy in adult Bcl-x-deficient mice. Longitudinal studies revealed that these phenotypes are established by regressive processes that occur primarily during the first postnatal week, whereas neurogenesis and migration showed no obvious abnormality during embryonic stages. Specific families of white matter tracts that once formed normally during the embryonic stages underwent dramatic degeneration postnatally. Thus, this technique serves as a powerful tool to efficiently localize temporal and spatial manifestation of morphological phenotype

    A Feasibility Study of Quantifying Longitudinal Brain Changes in Herpes Simplex Virus (HSV) Encephalitis Using Magnetic Resonance Imaging (MRI) and Stereology.

    Get PDF
    OBJECTIVES: To assess whether it is feasible to quantify acute change in temporal lobe volume and total oedema volumes in herpes simplex virus (HSV) encephalitis as a preliminary to a trial of corticosteroid therapy. METHODS: The study analysed serially acquired magnetic resonance images (MRI), of patients with acute HSV encephalitis who had neuroimaging repeated within four weeks of the first scan. We performed volumetric measurements of the left and right temporal lobes and of cerebral oedema visible on T2 weighted Fluid Attenuated Inversion Recovery (FLAIR) images using stereology in conjunction with point counting. RESULTS: Temporal lobe volumes increased on average by 1.6% (standard deviation (SD 11%) in five patients who had not received corticosteroid therapy and decreased in two patients who had received corticosteroids by 8.5%. FLAIR hyperintensity volumes increased by 9% in patients not receiving treatment with corticosteroids and decreased by 29% in the two patients that had received corticosteroids. CONCLUSIONS: This study has shown it is feasible to quantify acute change in temporal lobe and total oedema volumes in HSV encephalitis and suggests a potential resolution of swelling in response to corticosteroid therapy. These techniques could be used as part of a randomized control trial to investigate the efficacy of corticosteroids for treating HSV encephalitis in conjunction with assessing clinical outcomes and could be of potential value in helping to predict the clinical outcomes of patients with HSV encephalitis
    • …
    corecore