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Magnetic Resonance Diffusion Tensor Microimaging Reveals
a Role for Bcl-x in Brain Development and Homeostasis
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A new technique based on diffusion tensor imaging and computational neuroanatomy was developed to efficiently and quantitatively
characterize the three-dimensional morphology of the developing brains. The technique was used to analyze the phenotype of conditional
Bcl-x knock-out mice, in which the bcl-x gene was deleted specifically in neurons of the cerebral cortex and hippocampus beginning at
embryonic day 13.5 as cells became postmitotic. Affected brain regions and associated axonal tracts showed severe atrophy in adult
Bcl-x-deficient mice. Longitudinal studies revealed that these phenotypes are established by regressive processes that occur primarily
during the first postnatal week, whereas neurogenesis and migration showed no obvious abnormality during embryonic stages. Specific
families of white matter tracts that once formed normally during the embryonic stages underwent dramatic degeneration postnatally.
Thus, this technique serves as a powerful tool to efficiently localize temporal and spatial manifestation of morphological phenotype.
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Introduction
Anatomical characterization of the developing mouse brains is
becoming increasingly important because of the availability of
mutant strains of mice that provide a means to study genetic and
molecular mechanisms of mammalian brain development and its
abnormalities. However, the complex sequences of tissue growth
and movements in three dimensions during brain development
make characterization of phenotypes a challenging task. Cur-
rently, morphological analyses of developing brains rely almost
exclusively on histology and a few available paper-based atlases,
which provide limited views in terms of both slice locations and
angles. Information about three-dimensional (3D) volumes and
shapes, including their averages, normal variability, and tempo-
ral progressions at each developmental stage, is almost nonexist-
ent. Therefore, imaging techniques for efficient and accurate ex-
aminations of three-dimensional neuroanatomy in embryonic
and neonatal stages will greatly enhance our ability to investigate
mammalian brain development.

Recently, we and other groups have demonstrated that mag-
netic resonance (MR) diffusion tensor microimaging (uDTI) can
non-invasively delineate the neuroanatomy of developing brains
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and capture embryonic structures such as the neuroepithelium,
cortical plate, and axonal tracts (Thornton et al., 1997; Neil et al.,
1998; Jacobs et al., 1999; Mori et al., 2001; Zhang et al., 2003). In
uDTI, the process of water diffusion is used as a probe to reveal
the presence and orientation of “ordered tissue structures”
(Moseley et al., 1990; Beaulieu and Allen, 1994; Henkelman et al.,
1994; Basser and Pierpaoli, 1996). For example, most axonal
tracts are highly ordered, providing unique diffusion orientations
along their trajectories (called diffusion anisotropy). Gray matter
structures, such as the hippocampus and cortex, also show dis-
tinct patterns of diffusion orientations (Neil et al., 1998, 2002;
Mori et al., 2001; Zhang et al., 2002).

In this report, the normal development of C57BL/6 mouse
brains was examined beginning at embryonic day 12 (E12) to
determine the temporal and spatial evolution of brain structures.
Using this database of normal brain development, the phenotype
of conditional Bcl-x knock-out mice was investigated. The pre-
dominant product of the bcl-x gene is Bcl-xL, an anti-apoptotic
Bcl-2 family member that is abundantly expressed in neurons of
the developing and adult brains. Bcl-xL inhibits the damaging
effects of proapoptotic factors Bax and Bak on mitochondria, but
their detailed mechanisms of action are incompletely under-
stood. Bcl-xL regulates cell death (apoptosis) and is crucial for the
maintenance of immature neuronal cells during development
because bcl-x knock-out mice die at approximately embryonic
day 12.5 (Motoyama et al., 1995). However, we found that con-
ditional deletion of the bcl-x gene in the cortex and hippocampus
allowed mice to survive to adult stages. Adult conditional Bcl-x
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knock-out mice showed atrophy in the
cortex and hippocampus and in specific
white matter tracts. Using uDTI, we char-
acterized the temporal course of the phe-
notypic manifestation. Specifically, we
asked whether the phenotype was attribut-
able to an initial malformation of the cor-
tex and white matter tracts or instead at-
tributable to the degeneration of neural
structures that had once properly formed.
Our results exemplified the advantages of
using uDTI to efficiently and accurately
characterize the rapidly evolving four-
dimensional neuroanatomy.

Materials and Methods

Animal subjects. All experiments and proce-
dures were approved by the Animal Research
Committee of the Johns Hopkins University
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School of Medicine. We used C57BL/6 mice as

the subject of our study on normal mouse brain
development. Specimens were fixed with 4%
paraformaldehyde in PBS for >48 h. Before im-
aging, we placed specimens in PBS for >24 h to
wash out the fixation solution and transferred
them into home-built magnetic resonance-
compatible tubes. The tubes were then filled
with fombin (Fomblin perfluoro polyether;
Ausimont, Thorofare, NJ) to prevent dehydra-
tion. We imaged ex vivo fixed mouse samples at
embryonic and postnatal stages (n = 2 for E12—
E13; n = 3 after).

To selectively delete Bcl-x in postmitotic neu-
rons, a line of floxed bcl-x mice (Rucker et al.,
2000) were crossed with NEX-Cre knock-in
mice in which the Cre recombinase expression
is under the control of neuronal basic helix-
loop-helix protein NEX promoter and predom-
inantly localized in the cerebral cortex and
hippocampus (Schwab et al., 1998). The Cre-
mediated gene deletion in the cortex is as early
as E13 (K. A. Nave, unpublished data). All of the
experiments were performed in a C57BL/6 and
129/Sv mixed background. Breedings between
flox/flox;+/+ and flox/+; cre/cre mice were
used to generate flox/flox;cre/+ (ko) and flox/+;
cre/~+ (wt) mice at similar ratios. The definition
of mouse ages and the sample preparation were
the same as for C57BL/6 mice. We imaged 15 e
knock-out mouse brain samples [# = 1 at E14,
E17,and 1 year old; n = 3 during postnatal day
0 (P0) to P7].

Image acquisition and processing. Imaging
was performed using a General Electric Omega
400 (9.4 T) spectrometer. We used a custom-
made solenoid volume coil as both the radio
frequency signal transmitter and receiver. The
nuclear magnetic resonance sequence was
based on a 3D multiple echo sequence with
navigator-echo phase correction scheme and
segmented k-space acquisition (Mori and van
Zijl, 1998). After each excitation, two imaging
echoes were acquired, followed by two navigator echoes to correct any
instrumental instabilities and subsequent changes in signal phase and
intensity during each scan. 3D T,-weighted images and diffusion-
weighted images were acquired with the same field of view [9 X 6 X 6
mm for the smallest sample (E12) and 17 X 11 X 8 mm for adult and

Figure 1.

Histology and MRI results of embryonic day 15 mouse brains. An H&E-stained section (a) and T,-weighted (b) image
are compared with DTl results (d). The locations of the CP (blue arrow), IZ (orange arrow), and VZ (pink arrow) are indicated.
With wDT, tissue orientation is visualized by color map, in which red represents anterior-to-posterior orientation, green repre-
sents medial-to-lateral orientation, and blue represents dorsal-to-ventral orientation (as indicated by color arrows). An oblique
orientation is represented by the combination of red, green, and blue colors. A schematic drawing (c) of the structures inside the
yellow rectangle in the DTl color map image shows the organization of neurons and progenitor cells (black oval), radial glial cells
(vertical line), and axons in the IZ (green horizontal line). In the enlarged image (e; corresponds to the area framed by the blue
rectanglein the wDTI color mapimage), the local tissue orientation is visualized by short line segments overlaid on the DTl color
map image. Scale bars, 1 mm. ic, Internal capsule. The H&E section was obtained from the atlas of Schambra et al. (1992).

others in between]. The imaging matrix had dimensions from 128 X
72 X 72 t0 128 X 84 X 80, which was zero filled to double their sizes after
the spectral data were apodized by a 10% trapezoidal function. The native
imaging resolutions ranged from 62 X 83 X 83 to 133 X 131 X 100 wm.
For diffusion-weighted images, a repetition time (TR) of 0.9 s, an echo
time (TE) of 37 ms, and two signal averages were used. Six heavily
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ropy (FA) was used. Isotropic diffusion-
weighted images were the sum of diffusion-
weighted images with different diffusion
gradient directions. Color map images were
generated by combining the images of primary
eigenvector and FA into red—green—blue im-
ages. Red was assigned to the caudal-to-rostral
axis, green to the medial-to-lateral axis, and
blue to the dorsal-to-ventral axis. The intensity
was proportional to the FA. T, images at each
stage were obtained by fitting T,-weighted im-
ages of four different TE values to a monoexpo-
nential model. Segmentation of cortex and hip-
pocampus were performed manually following
the definitions in the atlas of Paxinos and
Franklin (2000).

Landmark-based brain mapping. The large
deformation metric mapping algorithms are
based on methods described by Joshi and Miller
(Joshi and Miller, 2000; Miller et al., 2002). It
computes a transformation between 3D images
to deform one brain toward another based on
270 manually defined landmarks along major
white matter tracts and cortical and hippocam-
pal surfaces. Information on local tissue volume

Figure 2.

http://www.hms.harvard.edu/research/brain/methods.html.

diffusion-weighted images were acquired at b = 1000 — 1200 s/mm?* in
addition to one or two images of minimum b value (150 s/mm?). Diffu-
sion sensitizing gradients were applied along six different orientations:
[0.707, 0.707, 0.000], [0.707, 0.000, 0.707], [0.000, 0.707, 0.707],
[—0.707, 0.707, 0.0000], [0.707, 0.000, —0.707], and [0.000, —0.707,
0.707]. The total imaging time was ~24 h. For T,-weighted images, we
used a TR 0f 0.9 s, four TE values (37, 60, 80, and 100 ms), and two signal
averages for a total imaging time of 9 h.

The diffusion tensor was calculated using a multivariant linear fitting
method, and three pairs of eigenvalues and eigenvectors were calculated
for each pixel (Basser et al., 1994; Basser and Pierpaoli, 1996). The eigen-
vector associated with the largest eigenvalue was referred to as the pri-
mary eigenvector. For the quantification of anisotropy, fractional anisot-

Comparison of histology and MRI of adult mouse brains. Myelin- (a) and Nissl- (b) stained coronal histological
sections are shown with T,-weighted (c) and DTl color map (d) images. The area within the orange boxin DTl color map image
is enlarged in e and overlaid with short lines that indicate tissue orientations. Several anatomical structures identifiable in the
T,-weighted and DTl images are labeled. cc, Corpus callosum; cg, cingulum; CX, cerebral cortex; dg, dentate gyrus; e, external
capsule; fi, fimbria; ic, internal capsule; st, stria terminalis. Scale bars, T mm. Myelin- and Nissl-stained sections were obtained
from the High Resolution Mouse Brain Atlas, available at http://www.hms.harvard.edu/research/brain/intro.html. Detailed de-
scription of the histological sections can be found at http://www.hms.harvard.edu/research/brain/intro.ntml and

and shape changes can be computed from the
transformation (Miller et al., 2002; Toga and
Thompson, 2003). The algorithm is imple-
mented on a Pentium-IV personal computer
with a 1.7 GHz central processing unit and 1 GB
of memory. With imaging matrix size of 272 X
168 X 128 and 270 landmarks, the total com-
putation time was 2 h.

Results
pDTI of the normal developing
mouse brain
In Figure 1, comparison between histology
and uDTI is shown using E15 mouse
brains. A hematoxylin and eosin (H&E)
(Fig. 1a) -stained section shows the exis-
tence of several layers in the early cere-
brum: the ventricular zone (VZ), the inter-
mediate zone (IZ), and the cortical plate
(CP). These embryonic neuronal struc-
tures formed the basic architectures of
early mouse forebrain (diagrammed in
Fig. 1¢). Compared with conventional T,-
weighted (Fig. 1b, T,, transverse relaxation
time constant) MR image, uDTI images
(Fig. 1d) provide a far superior contrast for
delineating the cytoarchitecture of these
three layers (Fig. 1d). In the color-coded
map in Figure 1d, the color represents the
orientation of tissue alignment, and the in-
tensity represents the existence of the alignment (the degree of
water diffusion anisotropy); the brighter the image, the more
coherent alignment there is. The actual orientation of the align-
ment can also be appreciated from a vector plot (Fig. 1e). The VZ
and CP share radiating patterns with orientations perpendicular
to the ventricular (green) and pial (blue) surfaces, respectively.
The IZ contains pioneering axonal fibers sent out by neurons in
the CP and has orientations parallel to the ventricular and pial
surfaces. Early axonal tracts, such as the internal capsule (ic), can
also be identified in uDTI images (Fig. 14, ic).

In the adult (1 year), T,-weighted image (Fig. 2¢) shows strik-
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Figure3.
are carefully aligned to ensure proper orientation and position, and two-dimensional coronal images are selected at the level of anterior commissure. T, map images are scaled from 0 to 120 ms. Blue,
orange, and pink arrows indicate the location of the cortical plate (or cortex), the intermediate zone, and the ventricular zone (neuroepithelium). White matter tracts shown here include the anterior
commissure (red arrows), the corpus callosum (orange arrows), the fornix (yellow arrows), and the internal capsule (white arrows). Scale bars, 2 mm.

ing similarity to the myelin-stained histological section (Fig. 2a),
suggesting that its contrast is dominated by myelin content. The
uDTI image (Fig. 2d), which is sensitive to tissue orientation and
diffusion anisotropy, provides unique cytoarchitectural informa-
tion that cannot be appreciated in the T,-weighted images. For
example, detailed white matter anatomy at the boundary between
the corpus callosum (cc, green for medial-to-lateral orientation)
and the cingulum (cg, red for caudal-to-rostral orientation) can
be clearly delineated, which is difficult to appreciate even in the
histological sections. In the region of the cerebral cortex, the
radiating pattern, observed in the embryonic cortical plate, is
preserved as shown in the enlarged vector plot (Fig. 2e, CX),
although the degree of anisotropy is greatly reduced (appeared
dark), probably because of the increased cytoarchitectural com-
plexity of the adult cerebral cortex compared with the embryonic
stages.

Coronal T, map and wDTI images of mouse brains from E12
to P45 are displayed in Figure 3 to show the progression of cor-
tical and axonal development. At E12, only a thin layer of neuro-
epithelium lines the early lateral ventricle (LV) (indicated by pink
arrows). It is soon covered by the CP (E14, blue arrows), which is
formed by migrated neurons. By E14, the three-layered structures
(VZ,1Z, and CP) can be clearly appreciated in the uDTI but not
the T, map images. As neuronal migration continues, the thick-
ness of the CP increases, whereas the size of the VZ and the LV
diminishes quickly. At PO, the VZ cannot be detected at an imag-
ing resolution of 80 wm. Axonogenesis is well synchronized with

DTl of developing mouse brains. a, T, and DTl color map images of embryonic mouse brains. b, T, and DTl images of postnatal mouse brains. Three-dimensional volume images

neurogenesis. The basic axonal architecture of adult mouse brain
is completed before PO. For example, axons that are part of the
anterior commissure can be detected at E14 (red arrows). Be-
tween E18 and PO, the anterior commissure acquires a shape
similar to its adult form, although the size keeps increasing
throughout the neonatal stages (Fig. 3b). Several other white mat-
ter structures follow the same pattern of development as the an-
terior commissure (Fig. 3).

pDTI analysis of developing Bcl-x knock-out mouse brain

In the neuronal-specific Bel-x conditional knock-out mice, the
bel-x gene is disrupted in early postmitotic neurons beginning at
E13.5 (see Materials and Methods), thereby accommodating the
requirement for Bcl-x during early development and neurogen-
esis. A developmental profile of the brains of these mice was
compared with their wild-type littermates using uDTI (Fig. 4). At
the adult stage, knock-out mice have severe atrophy in the cortex
and hippocampus, accompanied by severe defects in major com-
missural tracts, such as the corpus callosum and the anterior
commissure. Time course studies using uDTI show that most
significant difference in phenotype was established during the
early postnatal development period from PO to P7 (Fig. 4b). At
E14 and E17, the morphology of the CP, IZ, and VZ in knock-out
mice were similar to their wild-type littermates. The normal cor-
tical formation was confirmed by histology performed at several
cortical regions of E17 mice (Fig. 4a). At PO, wild-type and
knock-out mice had comparable cortical thickness and white
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DTlimages showing temporal phenotype evolution of conditional Bc/-x knock-out mice compared with wild-type littermates. a, Images of E14 and E17 mouse brain with Niss|-stained

sections of cortex. b, Images of PO, P7, and 1 year old (Adult) with Nissl-stained sections of adult whole brains. The developing anterior commissure (red arrows), corpus callosum (orange arrows),
and fornix (yellow arrows) can be identified from P0. The neocortex and the cortical plate (blue arrows) are also labeled. The location of the intermediate zone (orange arrows) and the ventricular
zone (pink arrows) are indicated for E14 and E17 animals. Scale bars in the wDTI, 1 mm. Scale bars in the Nissl-stained section of E17 mouse cortex, 0.2 mm.

matter sizes. At P7, the cortical and hippocampal volumes in
knock-out mice became appreciably smaller than those of wild-
type littermates. At this point, selective defects in white matter
tracts also became apparent. The anterior commissure and the
corpus callosum had severe loss of volume, whereas the fornix
was relatively well preserved in the slice shown in Figure 4. The
same defects were also found in the adult knock-out mice, shown
in both uDTIimages and Nissl-stained sections. A more compre-
hensive analysis of several white matter tracts in the brains of

wild-type and bcl-x-deficient mice is summarized in Table 1. We
did not find major defects in the subcortical gray matter areas or in
the cerebellum. Axonal tracts related to these spared brain regions
are also presented. For example, the fasciculus retroflexus, cerebral
peduncle, and cerebellar peduncles in knock-out mice shared similar
morphological features with those in wild-type littermates during
postnatal development. Among the axonal tracts associated with
hippocampus and limbic system, the fimbria and the ventral hip-
pocampal commissure had significant atrophy.
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Table 1. Subjective scoring results of status of white matter tracts in developing
Bcl-x knock-out mice

Axonal tracts PO P3 P5 P7 Adult
Interhemispheric
Corpus callosum - + + + +
Anterior commissure - - + + +

Posterior commissure - — — - —
Subcortical projections

Internal capsule - — - - —

Cerebral peduncle - - - - —

Pyramidal tract - — - - —

Medial lemniscus - — — - —
Projections to/from thalamus

Mammillo-thalamic tract - — - - —

Fasciculus retroflexus - — - - —

Medial forebrain bundle - - - - —
Limbic

Fimbria - + + + +

Hippocampal commissure - - - - +

Fornix - - - - —

Stria terminalis - — - - —

Cingulum - - - - —
Cerebellar

Superior cerebellar peduncle - - - - -

Middle cerebellar peduncle - — — — —

Inferior cerebellar peduncle - — - - —

—, No apparent abnormalities; +, significant reduction in size.

Quantitatively morphological analysis of Bcl-x knock-out
mouse brains

The ability of uDTI to differentiate various anatomical structures
enabled us to three-dimensionally delineate these structures for
quantitative volume measurement and shape analyses. Figure 5, a
and b, shows results of volumetric measurements based on the
manual anatomical delineation. The knock-out mice had little
postnatal growth in cortical and hippocampal volumes. Figure 5¢
shows results of using landmark-based brain mapping technique
to spatially map the tissue volume difference between wild-type
and knock-out mouse forebrains at P7. The first and the third
column show two examples of wild-type mouse brains and a
result of shape characterization (second column). The light blue—
green color indicates there is only a small local tissue volume
differences between the two brains with respect to the normal SD
(n = 4). Analysis of the mutant mouse (Fig. 5¢, the fourth column)
shows that the cerebral cortex, septal, and hippocampal regions in
the knock-out mouse brain (Fig. 5¢, P7ko) have significant atrophy
(dark blue; ~10 times the SD less than the wild-type volume),
whereas the caudate—putamen, hypothalamus, and the thalamus
show only mild atrophy (one or two times the SD).

Discussion

In this report, mouse brain development was characterized three-
dimensionally using uDTI. Compared with the poor contrast of
conventional relaxation-based magnetic resonance imaging (MRI),
uDTI provides effective contrast of the premyelinated CNS (Figs.
1-3). Using uDTI, many neuronal tissues exhibit unique patterns of
anisotropic diffusion of water molecules. The orientation and the
degree of anisotropy reflect the arrangement of local cytoarchitec-
tures, and DT is the only technology that can capture such informa-
tion non-invasively and three-dimensionally.

Compared with histology-based methods, uDTI excels in two
key areas of phenotype characterization. First, it can efficiently
survey morphological phenotypes. When there is no a priori
knowledge about possible phenotypes, detection of abnormali-
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ties from a four-dimensional anatomical domain would be a
challenging task. Thus, uDTI can be used as a screening tool to
localize potential phenotypes and then direct subsequent histo-
logical examination to the appropriate developmental timings
and locations. Second, wDTI can accurately and quantitatively
evaluate the morphology of the sample. It can be used to capture
the shapes of objects three-dimensionally and non-invasively,
which eliminates unwanted processing of tissue by sectioning,
and structures of interest can be quantitatively examined in terms
of their volumes and shapes (Fig. 5).

This paper describes the four-dimensional developmental
processes from E12 to mature stages (P80 and 1 year). The uDTI
portrayed white matter tracts as bright structures (high tissue
diffusion anisotropy) with intrinsic orientation tangential to the
trajectories of axonal fibers. As reported previously (Thornton et
al., 1997; Neil et al., 1998; Mori et al., 1999, 2001), the diffusion
process in cortical areas displays the radiating pattern of the dif-
fusion orientation throughout development, whereas the degree
of the anisotropy reduces markedly after birth (P0).

Normal brain development was interrupted by knocking out
the bcl-x gene. Based on the data obtained by uDTI, we can
deduce several important facts about the impact of Bcl-x defi-
ciency on brain development. First, the mutant does not have
significant morphological changes until P0O. Three-dimensional
examination by uDTI revealed that the three-layered structure in
the early cerebral cortices were well formed and followed the
same pattern of development as in wild-type littermates during
embryonic stages. Subsequent histological studies at several coro-
nal slice levels confirmed our MRI findings. These results suggest
that migration of postmitotic neurons was preserved. Also, all
white matter tracts that can be identified by the uDTI were
formed without apparent abnormalities at embryonic stages de-
spite previous deletion of bcl-x (Table 1).

Second, quantitative comparison shows that the volume of the
cortical plate and the hippocampus in knock-out mice were
smaller than those of the wild type by ~15% at PO (Fig. 5a,b), and
substantial changes in the phenotype appeared between PO and
P7, during which growth of the cortex and hippocampus seemed
arrested (Fig. 4). Because this is a period when the cortical volume
of the wild type increased by approximately fivefold, this appar-
ent arrest led to substantial volumetric differences at mature
stages. With the three-dimensional MR images and landmark-
based brain mapping techniques, we found that the atrophy was
limited to the cerebral cortex, septal, and hippocampal regions,
whereas the caudate—putamen, thalamus, and cerebellum, in
which Bcl-x is maintained, were relatively preserved, consistent
with the pattern of bcl-x deletion.

Third, bcl-x deficiency caused several white matter tracts that
were already formed by P0 to undergo a marked reduction by P7.
This was an unexpected finding and suggests that, although axo-
nogenesis and axonal targeting are relatively uninterrupted, spe-
cific groups of axons were not maintained postnatally. Several
major cortico-cortical connections, including the corpus callo-
sum and the anterior commissure, were severely affected. Among
axonal tracts associated with the hippocampus, the fimbria and
the ventral hippocampal commissure were severely affected. Be-
cause fimbria contains axonal fibers originate from or toward the
pyramidal neurons of the hippocampus, which also pass through
the ventral hippocampal commissure (Amaral and Witter, 1995),
these results are in line with the decreases in the hippocampal
pyramidal neuron population. White matter tracts in intra-
thalamic, thalamo-cortical/cortico-thalamic, and thalamo-
spinal connections were spared, which may be the origin of the
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Figure 5.  Quantitatively analysis of Bc/-x knock-out mouse brain at P7. a, b, The volumetric changes of cortex (CX) and hippocampus (H) for wild-type and knock-out littermates (n = 3 during
PO—P7;n = 1for 1year old). ¢, Coronal DTl images of two wild-type P7 mouse brains (P7wt 1and P7wt 2, the first and third columns) and a knock-out P7 mouse brain (P7ko, the fifth column)
and comparisons of local tissue volume. The images in the second and the fourth columns map the differences in local tissue volume between the P7wt 1and P7wt 2 and between the P7wt 1and
its littermate P7ko, both using P7wt 1 as the template . The local volumetric changes were normalized with the SD of volumetric changes among wild-type mice (n = 4) and mapped into the
template wild-type mouse brain (P7wt 1). In these maps, a negative value of 10 represents atrophy at the magnitude of 10 times the normal SD, and a positive value represents hypertrophy with
respect to the normal SD. The locations of the corpus callosum (orange arrows), the anterior commissure (red arrows), and the ventral hippocampal commissure (blue arrow) are indicated. ac,
Anterior commissure; cc, corpus callosum; cpu, caudate—putamen; cx, cortex; i, fimbria; fx, fornix; h, hippocampus; ic, internal capsule; mt, mammillo-thalamic tract; opt, optic tract; s, septal region;
st, stria terminalis; th, thalamus. Scale bars, 2 mm.
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survival of the knock-out animals. Questions remain as to
whether the defects in the white matter tracts are attributable to a
lack of target neurons with which axons can set up connections or
attributable to abnormalities in the neurons that send out axons.

This study demonstrates the potential of using wDTI for mor-
phological phenotype studies. Despite the advantages described
above, uDTT has several limitations. First, the long scanning time
(24 h) presently prevents in vivo high-resolution experiments,
which would have the advantage of following the longitudinal
development of the same animal. This is attributable to the high
image resolution (1000 times finer than normal human scans)
required to elucidate these miniature brain structures. Develop-
ment of faster imaging techniques for in vivo study will be an
important future research effort. Second, MRI techniques are
based on chemical and physical properties of water molecules,
and, thus, its results can only serve as indirect evidence of cellular
and molecular events. Here, although wDTI revealed that the
Bcl-x mutant had a thinner cortex, we cannot determine whether
this thinning is attributable to the loss of neurons or to an in-
crease in cell densities. Additional histological and/or physiolog-
ical studies are required to investigate the mechanism and conse-
quences of the abnormalities described here.

In conclusion, our findings demonstrate that wDTI of the
developing mouse brain can yield anatomical images with high
spatial resolution and unique tissue contrast for phenotypic char-
acterization. The temporal evolution of critical anatomical struc-
tures, such as the neuroepithelium, cortical plate, and various
axonal tracts can be monitored. wDTI was successfully applied to
the characterization of altered brain development in conditional
Bcl-x knock-out mice. It serves as an ideal tool for macroscopic
phenotypic characterization that is complementary to histologi-
cal based methods, as well as a unique approach to studying the
process of neuronal morphogenesis.
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