14,409 research outputs found

    Thermodynamic properties of uranium dioxide: Electronic contributions to the specific heat

    Get PDF
    It has recently been proposed that the anomalous specific heat of uranium dioxide be ascribed to the effect of electronic defects rather than Frenkel disorder on the union sub-lattice. We here present calculations showing that the entropy contribution from electronic defects is large enough to make a major contribution to the specific heat whereas the contribution from Frenkel defects is much smaller

    The first occurrence of the Ponto-Caspian invader, Hemimysis anomala G.O. sars, 1907 (Mysidacea) in the UK

    Get PDF
    An invasive Ponto-Caspian mysid, Hemimysis anomala G.O. Sars, 1907, was recorded in England for the first time in 2004. Usually a deep water species, in England H. anomala has been observed in shallow waters, in which it shelters under or within anthropogenic structures during daylight. This behaviour renders traditional, net-based survey methods ineffective. Therefore, a distribution survey of the English East Midlands was conducted by searching for individuals by torchlight after dark. H. anomala was found to be widespread within the study area, occurring at 24 out of 51 sites surveyed. However, the geographical limits of its distribution were not determined. The species occurred at low densities in canals and in backwaters of the River Trent, whilst dense swarms were observed in September 2005 in a regatta lake connected to the River Trent. H. anomala has the potential to spread through England's canal network and could colonize the lower reaches and estuaries of rivers including the River Thames and River Severn. Habitat preference analysis indicated that flowing water and absence of shelter prevented population establishment, although the species' U.K. distribution suggests that it can migrate through such areas of unsuitable habitat

    High Energy Neutrinos and Photons from Curvature Pions in Magnetars

    Get PDF
    We discuss the relevance of the curvature radiation of pions in strongly magnetized pulsars or magnetars, and their implications for the production of TeV energy neutrinos detectable by cubic kilometer scale detectors, as well as high energy photons.Comment: 19 pages, 4 figures, to appear in JCA

    Approximation of Rough Functions

    Get PDF
    For given p∈[1,∞]p\in\lbrack1,\infty] and g∈Lp(R)g\in L^{p}\mathbb{(R)}, we establish the existence and uniqueness of solutions f∈Lp(R)f\in L^{p}(\mathbb{R)}, to the equation f(x)−af(bx)=g(x), f(x)-af(bx)=g(x), where a∈Ra\in\mathbb{R}, b∈R∖{0}b\in\mathbb{R} \setminus \{0\}, and ∣a∣≠∣b∣1/p\left\vert a\right\vert \neq\left\vert b\right\vert ^{1/p}. Solutions include well-known nowhere differentiable functions such as those of Bolzano, Weierstrass, Hardy, and many others. Connections and consequences in the theory of fractal interpolation, approximation theory, and Fourier analysis are established.Comment: 16 pages, 3 figure

    Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with gamma-ray and radio emission geometries

    Full text link
    Thanks to the huge amount of gamma-ray pulsar photons collected by the Fermi Large Area Telescope since June 2008, it is now possible to constrain gamma-ray geometrical models by comparing simulated and observed light-curve morphological characteristics. We assumed vacuum-retarded dipole pulsar magnetic field and tested simulated and observed morphological light-curve characteristics in the framework of two pole emission geometries, Polar Cap (PC), radio, and Slot Gap (SG), and Outer Gap (OG)/One Pole Caustic (OPC) emission geometries. We compared simulated and observed/estimated light-curve morphological parameters as a function of observable and non-observable pulsar parameters. The PC model gives the poorest description of the LAT pulsar light-curve morphology. The OPC best explains both the observed gamma-ray peak multiplicity and shape classes. The OPC and SG models describe the observed gamma-ray peak-separation distribution for low- and high-peak separations, respectively. This suggests that the OPC geometry best explains the single-peak structure but does not manage to describe the widely separated peaks predicted in the framework of the SG model as the emission from the two magnetic hemispheres. The OPC radio-lag distribution shows higher agreement with observations suggesting that assuming polar radio emission, the gamma-ray emission regions are likely to be located in the outer magnetosphere. The larger agreement between simulated and LAT estimations in the framework of the OPC suggests that the OPC model best predicts the observed variety of profile shapes. The larger agreement between observations and the OPC model jointly with the need to explain the abundant 0.5 separated peaks with two-pole emission geometries, calls for thin OPC gaps to explain the single-peak geometry but highlights the need of two-pole caustic emission geometry to explain widely separated peaks.Comment: 28 pages, 20 figures, 8 tables; accepted for publication in Astronomy and Astrophysic

    Hard X-ray Quiescent Emission in Magnetars via Resonant Compton Upscattering

    Full text link
    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.Comment: 5 pages, 2 figures, to appear in Proc. "Physics of Neutron Stars - 2017," Journal of Physics: Conference Series, eds. G. G. Pavlov, et al., held in Saint Petersburg, Russia, 10-14 July, 201
    • …
    corecore