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It has recently been proposed that the anomalous specific heat of uranium dioxide be ascribed to the effect of electro- 
nic defects rather than Frenkel disorder on the union sub-lattice. We here present calculations showing that the entropy 
contribution from electronic defects is large enough to make a major contribution to the specific heat whereas the contri- 
bution from Frenkel defects is much smaller. 

1. Introduction 

Ther ~ermodynamic properties of solid and liquid 
phase uranium dioxide have been of considerable 
interest. Experiments show that there is an excess 
enthalpy above 1500 K giving rise to an anomalous 
increase in the solid state specific heat CJs) (Brown- 
ing et al. [l] ; we are also indebted to Mr. Browning 
for an ~pub~~ed survey). Given the current preci- 
sion of enthalpy measurements it is not possible to 
decide whether or not UOz shows a diffuse second- 
order transition, as do many fluorite lattice corn- 
pounds; and so two quite different forms of the C&s) 
versus temperature curve have been postulated. 

The defect structure of this compound is clearly of 
considerable importance in this study. Catlow [2,3] 
has presented calculations suggesting that electronic 
disorder is more important in this compound than 
ionic disorder (here due to anion Frenkel defects). 
MacInnes [4-71 too has suggested the importance of 
electronic excitation is solid and liquid IJO*. He and 
his colleagues (MacInnes, Martin and Vaughan [8]) 
have discussed the implications in accident analysis. 
This view of electronic disorder is in sharp contrast to 
the proposed defect model of Szwarc [9], and 
Kerr&k and Clifton [lo]. In this paper we present 
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dot. 

calculations of the thermodynamic properties of 
various defect systems present in UOs and so resolve 
the question of the source of the increase in C,(s). 

2. The caklation 

The general principles of the calculation will be 
described elsewhere (warding et al. [l l]); here we 
merely give a resume. 

We consider a cluster consisting of the defect and 
nearest neighbour ions embedded in a non-primitive 
repeating unit of the fluorite structure (usually the 
fee cell is adequate). This unit is chosen to be suffr- 
ciently large so that none of the cluster ions are on 
the faces of the unit. The ions of the cluster are given 
the relaxed positions as calculated from a HADES run 
using the potentials of Catlow [2] shown in table 1. 
The phonon spectrum is calculated using this repeat- 
ing unit and Catlow’s potentials. Since a non-primi- 
tive cell is used the branches of the spectrum are 
folded back and so an adequate representation of the 
partition function may be obtained using the fre- 
quency spectrum seen at the point k = 0.0, 0.0, 0.0 
alone. provided the non-primitive cell has all the 
s~rnet~ elements of the primitive cell, this fol~ng 
back will be performed in a consistent manner for all 
symmetry directions; this is the basis of the large unit 
cell method of Dobrotvorskii et al. [ 121. In effect, we 
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Table 1 
Potential set for UOz used in the calculations 

3. calculations on the perfect lattice 

Ionic charge of U Zlel= 4.0 
Repulsive potentials 

u:o A12 @VI = 1217.8 

PlZ (W = 0.3871 
0:o A22 (eV) = 22 764.3 

P22 a) 

C22 feVfA6) 1 
0.149 

112.2 
Shell charges Y+lel = 6.54 

Y-lei= -4.4 
Shell-core K+ (eV/A2) = 103.38 
force constants K_ (eV/A2) = 292.98 

replace the integral over wavevector which appears in 
the partition function by a sum over branches at 
special points in the zone: 

1 - 

% 
J akflk)+ CFj(k=O)/c 1. i i 

Further, since in this case all we are interested in is 
the difference between a value for the defect cluster 
and a value calculated for the perfect crystal; pro- 
vided we calculate the perfect crystal using the same 
method and the same repeating unit as used for the 
defect cluster we can use non-primitive unit cells 
which do not all have all the required symmetry 
elements. 

We thus approximate the partition function 

Uo=E,t j-dkx +*, 
0 

n 

(where Ee is the internal energy and Ga the confi- 
gurational term) as 

lnQ=ln~e-,- 7 -q ln[l -exp(-‘s)], 

and then calculate thermodynamic properties using 
the standard relations 

S = NkBT@ ln Q/37), + NkB In Q , 

A=--NkBTlnQ. 

Since we propose to use these potentials to obtain 
a frequency spectrum for the lattice it is of interest to 
see how well the phonon dispersion curves are repro- 
duced. This has been done and the results compared 
with the measurements of Dolling et al. [3]. This is 
shown in fig. 1. The discrepancy between theory and 
experiment is of the order of IO% at worst and is 
usually considerably better. We have also calculated 
the perfect crystal entropy using various repeating 
units and these results are compared with the powder 
experiments of Huntzicker and Westrum [ 141 (fig. 2). 
Also we compare with the curve produced by the 
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Fig. 1. Phonon spectrum of UOz. The experimental data are 
from Dolling et al. [ 131; the full lines are our calculations 
using Callow’s potential. 
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Fig. 2. Entropies for UO? in cal/mol - K from powder experi- 
ments and from theory, (1) Cell 2 X 2 X 2, sampled at & = 
(0, 0, 0). (2) Cell 2 X 2 X 2, sampled at k = (0, 0, 01, (l/2,0, 
0). (3) Cell 2 X 4 X 2, sampled at & = (0, 0,O). 

empirical equation of Kerrisk and Clifton [lo] for Cv 
using an Einstein-type model (fig. 3). 

These results give some confidence that the 
method for calculating the partition function pro- 
posed in section 2 is giving proper weight to the 
physically important areas of k space. 

4. Calculations on the electronic defects in UOz 

We shall consider the electronic defects using the 
small polaron model; that is to say that the electrons 
promoted from the valence hand are considered as 
localised on U3+ cations. To make the necessary 
calculations we shall assume that the only effect of an 
electron leaving or being attached to a uranium ion is 
on the ion charge (i.e. we assume the uranium shell 
charges and the uranium-oxygen potentials are the 
same as in the perfect lattice). 

We begin by calculating the Hehnholz energy 
of formation and entropy of formation of the defect 
on the assumption that the defect density is suffi- 
ciently low so that the hole and electron states do not 
interact. The relevant data and results appear in tables 
2 and 3. We have considered two estimates of the 
partition function: One where the k = (0.0, 0.0, 0.0) 
point alone is considered, and one where the k = 
(1 .O, 0.0, 0.0) point is considered as well. The second 
lactation should be the more accurate. The first 
case (A) gives an entropy of formation of 9.1 calf 
mol. K in the range 1800-3000 K and a Helmbolz 
free energy of formation as shown in fig. 4. Case B 
gives a lower entropy of formation of 7.3 callmol * K 
and a correspon~n~y higher free energy of forma- 
tion. 
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Fig. 3. Specific heat of UO2 in cal/mol - K at constant volume, from Kerrick (1972) compared with theory. (1) Cell 4 x 4 X 2, 
sampled at k = (0, 0,O). (2) Experiment; the Dulong-Petit &nit is shown. (3) Cell 2 X 2 X 2, sampled at & = (1, O,(J). Note that 
the origin does not correspond to C,, = 0. 
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Table 2 
Data for calculation of internal energy of electronic defects 
(Grant and Pyper [ 151) 

Ionisation potential for U4+ --f Us+ [I.P.(V)] = 46.57 eV 
Ionisation potential for U3+ + U4+ [I.P.(IV)] = 31.86 eV 

AU= AU(HADES) + I.P.(V) - I.P.(IV) 

Electron-hole pair 
0) at infinite separation 

(ii) nearest neighbours along 
( 100) direction 

(iii) nearest neighbours along 
(100) direction 

1.74 eV (per atom) 

1.64 eV (per atom) 

1.65 eV (per atom) 

For neither the U3+ nor the Us+ defect is there a 
recognisable local mode centred on the defects. How- 
ever in both cases soft modes do appear. In the case 
of U3+ a mode appears at 19 cm-’ corresponding to a 
twisting motion of the oxygen sub-lattice about the 
defect. This mode also appears for the Us+ defect at 
49 cm-r and another mode involving the U4+ ions 
appears at 56 cm-‘. 

We also consider the case where electron and holes 
are localised close together. Here we consider a U3+ 
ion and a Us+ ion as nearest neighbours in the [ 1101 
direction in a cluster containing all the nearest neigh- 
bours to this defect. Here we must take a larger 
repeating unit (four fee cells in square array in the 
(001) plane). Here we obtain an entropy of formation 
of 6.80 cal/mol * K for the temperature range. The 

Table 3 
HADES calculation of internal energy of formation of 
defects 

Electron-hole pair 
0) at infinite separation 
(ii) nearest neighbours along (100) 

direction 
(iii) nearest neighbours along (110) 

direction 
Frenkel pair (O’- interstitial) 

Yi) 
at infinite separation 
nearest neighbours along (111) 
direction 

Frenkel pair (O- interstitial) 
at infiite separation 

Frenkel pair (0’ interstitial) 
at infinite separation 

-11.24 eV 

-11.43 eV 

-11.41 eV 

5.12 eV 

5.20 eV 

8.9 eV 

16.94 eV 
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Fig. 4. Hehnholz free energy of formation of the electron- 
hole pair assuming electron and hole are well separated. (A) 
Considering the k = (0.0, 0.0, 0.0) point only. (B) Consider- 
ing the pointsk = (0.0, 0.0,O.O) and L = (1.0, 0.0,O.O). 

value does not depend si~i~c~tly on the orientation 
of the defect, and is little different from the case 
where the electron and hole are at large distances 
from one another. 

From these figures we may readily obtain a value 
for the concentration of defects assuming the reac- 
tion 

2 u4+* us*+ u3’ 

has reached equilibrium. We have 

-- - = 

since the concentration of holes (or U5+ ions) must 
equal the concentration of electrons (Us+ ions). At a 
temperature of 2700 K we obtain a value for the 
equilibrium constant 2.73 X 10m4, i.e. the concentra- 
tion of electrons and of holes are both about l&S%, 
and hence the total concentration of defects, count- 
ing both Us+ and U5+ is about 3.3%. A graph of this 
total concentration of defects over the temperature 
range of interest can readily be constructed (fig. 5). 

It is clear that as the defect concentration mounts, 
the assumption implicit in the HADES calculation 
that the defect may be considered as enclosed in a 
block of pure (if distorted) crystal will break down; 
at these concentrations the effective elastic and 
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Fig. 5. Concentrations of electrons and holes, ignoring inter- 
actions and exclusion effects. The quoted concentration is 
([@+I + ~~*I)I[~totall in percent. 

dielectric constants of the crystal will be different 
from the values used to obtain the potentials. In addi- 
tion the expansion of the lattice at these tempera- 
tures will modify the results. For this reason it is hard 
to estimate our quantitative accuracy through the 
qualitative conclusions do not seem in doubt. Further 
calculations on these lines are desirable but the above 
is quite sufficient to indicate a considerable contribu- 
tion from the electronic defects. 

5. Calculations on the Frenkel defects on the oxygen 
sub-lattice 

We now consider the effects of atomic defects on 
our predictions. The method of calculation is similar 
to that described in section 4. We consider the case 
where the vacancy and interstitial oxygen are isolated 
and where the interstitial is doubly charged. In this 
case the vibrational contribution to the entropy is 
negative, having a constant value of -1.0 cal/mol - K 
in the temperature range 2000-3000 K. Here there 
are two modes quite strongly localised on the defect, 
at 182 and 270 cm-‘. The energy of formation of the 

defect is 5.1 eV per defect which gives a defect con- 
centration of about lo4 defects per lattice site. 

It is clear that there are many more oxygen defects 
that might be considered, but on the basis of this one 
calculation it seems that the contribution of such 
defects to the anomalous specific heat will be much 
less than has been suggested. The atomic defect 
contribution may, however, be more significant close 
to the melting temperature. 

6. Conclusions 

The evidence from the anomalous specific heat of 
Urania at high temperatures suggests that there is a 
source of entropy, of the order of 10 cal/mol * K. The 
calculations in this paper show that it is highly 
unlikely that Frenkel defects on the anion sub-lattice 
can provide more than a small proportion of this. 
However the contribution from electronic defects is 
large and could account for it. In the present paper 
we have considered only one small polaron reaction 

2u4++ua+tu5+. 

It is apparent that there are others, which, although 
having a higher activation energy may make signifi- 
cant contributions close to the melting point. Also 
there is the configurational entropy term which we 
do not consider in this paper. With this in mind, we 
conclude that there is now strong evidence that 
electronic defects make a major contribution to the 
specific heat anomaly. A fuller analysis of the many 
contributions to the specific heat will be published 
separately [ 1 ] . 
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