202 research outputs found

    Effect of inertial lift on a spherical particle suspended in flow through a curved duct

    Get PDF
    We develop a model of the forces on a spherical particle suspended in flow through a curved duct under the assumption that the particle Reynolds number is small. This extends an asymptotic model of inertial lift force previously developed to study inertial migration in straight ducts. Of particular interest is the existence and location of stable equilibria within the cross-sectional plane towards which particles migrates. The Navier-Stokes equations determine the hydrodynamic forces acting on a particle. A leading order model of the forces within the cross-sectional plane is obtained through the use of a rotating coordinate system and a perturbation expansion in the particle Reynolds number of the disturbance flow. We predict the behaviour of neutrally buoyant particles at low flow rates and examine the variation in focusing position with respect to particle size and bend radius, independent of the flow rate. In this regime, the lateral focusing position of particles approximately collapses with respect to a dimensionless parameter dependent on three length scales, specifically the particle radius, duct height, and duct bend radius. Additionally, a trapezoidal shaped cross-section is considered in order to demonstrate how changes in the cross-section design influence the dynamics of particles.Brendan Harding, Yvonne M. Stokes and Andrea L. Bertozz

    The SUMO protease SENP3 regulates mitochondrial autophagy mediated by Fis1

    Get PDF
    Mitochondria are unavoidably subject to organellar stress resulting from exposure to a range of reactive molecular species. Consequently, cells operate a poorly understood quality control programme of mitophagy to facilitate elimination of dysfunctional mitochondria. Here, we used a model stressor, deferiprone (DFP), to investigate the molecular basis for stress-induced mitophagy. We show that mitochondrial fission 1 protein (Fis1) is required for DFP-induced mitophagy and that Fis1 is SUMOylated at K149, an amino acid residue critical for Fis1 mitochondrial localization. We find that DFP treatment leads to the stabilization of the SUMO protease SENP3, which is mediated by downregulation of the E3 ubiquitin (Ub) ligase CHIP. SENP3 is responsible for Fis1 deSUMOylation and depletion of SENP3 abolishes DFP-induced mitophagy. Furthermore, preventing Fis1 SUMOylation by conservative K149R mutation enhances Fis1 mitochondrial localization. Critically, expressing a Fis1 K149R mutant restores DFP-induced mitophagy in SENP3-depleted cells. Thus, we propose a model in which SENP3-mediated deSUMOylation facilitates Fis1 mitochondrial localization to underpin stress-induced mitophagy

    c‐Src activation as a potential marker of chemical‐induced skin irritation using tissue‐engineered skin equivalents

    Get PDF
    Skin irritancy to topically applied chemicals is a significant problem that affects millions of people worldwide. New or modified chemical entities must be tested for potential skin irritancy by industry as part of the safety and toxicity profiling process. Many of these tests have now moved to a non-animal-based format to reduce experiments on animals. However, these tests for irritancy potential often rely on monolayer cultures of keratinocytes that are not representative of the skin architecture or tissue-engineered human skin equivalents (HSE) using complex multi-gene expression panels that are often cumbersome and not amenable for high throughput. Here, we show that human skin equivalents increase abundance of several phosphorylated kinases (c-Src, c-Jun, p53, GSK3α/β) in response to irritant chemical stimulation by phosphokinase array analysis. Specific phosphorylation of c-SrcY419 was confirmed by immunoblotting and was plasma membrane-associated in basal/spinous cells by phospho-specific immunohistochemistry. Moreover, c-SrcY419 phosphorylation in response to the irritants lactic acid and capsaicin was inhibited by the c-Src inhibitors KB-SRC and betaine trimethylglycine. These data provide the first evidence for c-Src specific activation in response to chemical irritants and point to the development of new modes of rapid testing by immunodetection for first-pass screening of potential irritants

    The role of extracellular DNA in microbial attachment to oxidized silicon surfaces in the presence of Ca2+ and Na+

    Get PDF
    Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption

    Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man

    Get PDF
    notes: PMCID: PMC3887257This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development.Wellcome TrustDiabetes UKEuropean Community’s Seventh Framework Programme (FP7/2007-2013

    Types of Stroke among People Living with HIV in the United States

    Get PDF
    Background: Most studies of stroke in people living with HIV (PLWH) do not use verified stroke diagnoses, are small, and/or do not differentiate stroke types and subtypes.Setting: CNICS, a U.S. multisite clinical cohort of PLWH in care.Methods: We implemented a centralized adjudication stroke protocol to identify stroke type, subtype, and precipitating conditions identified as direct causes including infection and illicit drug use in a large diverse HIV cohort.Results: Among 26,514 PLWH, there were 401 strokes, 75% of which were ischemic. Precipitating factors such as sepsis or same-day cocaine use were identified in 40% of ischemic strokes. Those with precipitating factors were younger, had more severe HIV disease, and fewer traditional stroke risk factors such as diabetes and hypertension. Ischemic stroke subtypes included cardioembolic (20%), large vessel atherosclerosis (13%), and small vessel (24%) ischemic strokes. Individuals with small vessel strokes were older, were more likely to have a higher current CD4 cell count than those with cardioembolic strokes and had the highest mean blood pressure of the ischemic stroke subtypes.Conclusion: Ischemic stroke, particularly small vessel and cardioembolic subtypes, were the most common strokes among PLWH. Traditional and HIV-related risk factors differed by stroke type/subtype. Precipitating factors including infections and drug use were common. These results suggest that there may be different biological phenomena occurring among PLWH and that understanding HIV-related and traditional risk factors and in particular precipitating factors for each type/subtype may be key to understanding, and therefore preventing, strokes among PLWH
    corecore