9 research outputs found

    Building leaders for the UN Ocean Science Decade : a guide to supporting early career women researchers within academic marine research institutions

    Get PDF
    Diverse and inclusive marine research is paramount to addressing ocean sustainability challenges in the 21st century, as envisioned by the UN Decade of Ocean Science for Sustainable Development. Despite increasing efforts to diversify ocean science, women continue to face barriers at various stages of their career, which inhibits their progression to leadership within academic institutions. In this perspective, we draw on the collective experiences of thirty-four global women leaders, bolstered by a narrative review, to identify practical strategies and actions that will help empower early career women researchers to become the leaders of tomorrow. We propose five strategies: (i) create a more inclusive culture, (ii) ensure early and equitable career development opportunities for women ECRs, (iii) ensure equitable access to funding for women ECRs, (iv) offer mentoring opportunities and, (v) create flexible, family-friendly environments. Transformational, meaningful, and lasting change will only be achieved through commitment and collaborative action across various scales and by multiple stakeholders.Peer reviewe

    Seed dispersal by Ceratogymna hornbills in the Dja Reserve, Cameroon

    No full text
    Seed dispersal is a process critical to the maintenance of tropical forests, yet little is known about the interactions of most dispersers with their communities. In the Dja Reserve, Cameroon, seed dispersal by the hornbills Ceratogymna atrata, C. cylindricus and C. fistulator (Aves: Bucerotidae) was evaluated with respect to the taxonomic breadth of plants dispersed, location of seed deposition and effects on seed germination. Collectively, the three hornbill species consumed fruits from 59 tree and liana species, and likely provided dispersal for 56 of them. Hornbill-dispersed tree species composed 22% of the known tree flora of the site. Hornbill visit lengths, visit frequencies, and seed passage times indicated that few seeds were deposited beneath parent trees; in five hornbill/tree species pairings studied, 69–100% of the seeds ingested were deposited away from the parent trees. Germination trials showed that hornbill gut passage is gentle on seeds. Of 24 tree species tested, 23 germinated after passage by hornbills; of 17 planted with controls taken directly from trees, only four species showed evidence of inhibition of germination rate, while seven experienced unchanged germination rates and six experienced enhanced germination rates. Results suggested that Ceratogymna hornbills rank among the most important seed dispersers found in Afrotropical forests, and they deserve increased conservation attention. Ceratogymna hornbills are likely to become increasingly important in forest regeneration as populations of larger mammalian seed dispersers (such as forest elephants and primates) diminish.NYZS/The Wildlife Conservation Society, the National Science Foundation Graduate Fellowship Program, the GAANN Program of San Francisco State University, and ECOFAC Camerou

    To eat or not to eat? debris selectivity by marine turtles

    Get PDF
    Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles

    Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates

    Get PDF
    Millimeter-sized plastics are abundant in most marine surface waters, and known to carry fouling organisms that potentially play key roles in the fate and ecological impacts of plastic pollution. In this study we used scanning electron microscopy to characterize biodiversity of organisms on the surface of 68 small floating plastics (length range = 1.7–24.3 mm, median = 3.2 mm) from Australia-wide coastal and oceanic, tropical to temperate sample collections. Diatoms were the most diverse group of plastic colonizers, represented by 14 genera. We also recorded ‘epiplastic’ coccolithophores (7 genera), bryozoans, barnacles (Lepas spp.), a dinoflagellate (Ceratium), an isopod (Asellota), a marine worm, marine insect eggs (Halobates sp.), as well as rounded, elongated, and spiral cells putatively identified as bacteria, cyanobacteria, and fungi. Furthermore, we observed a variety of plastic surface microtextures, including pits and grooves conforming to the shape of microorganisms, suggesting that biota may play an important role in plastic degradation. This study highlights how anthropogenic millimeter-sized polymers have created a new pelagic habitat for microorganisms and invertebrates. The ecological ramifications of this phenomenon for marine organism dispersal, ocean productivity, and biotransfer of plastic-associated pollutants, remains to be elucidated

    Permanent Genetic Resources added to Molecular Ecology Resources database 1 January 2009-30 April 2009

    Get PDF
    International audienceThis article documents the addition of 283 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Agalinis acuta; Ambrosia artemisiifolia; Berula erecta; Casuarius casuarius; Cercospora zeae-maydis; Chorthippus parallelus; Conyza canadensis; Cotesia sesamiae; Epinephelus acanthistius; Ficedula hypoleuca; Grindelia hirsutula; Guadua angustifolia; Leucadendron rubrum; Maritrema novaezealandensis; Meretrix meretrix; Nilaparvata lugens; Oxyeleotris marmoratus; Phoxinus neogaeus; Pristomyrmex punctatus; Pseudobagrus brevicorpus; Seiridium cardinale; Stenopsyche marmorata; Tetranychus evansi and Xerus inauris. These loci were cross-tested on the following species: Agalinis decemloba; Agalinis tenella; Agalinis obtusifolia; Agalinis setacea; Agalinis skinneriana; Cercospora zeina; Cercospora kikuchii; Cercospora sorghi; Mycosphaerella graminicola; Setosphaeria turcica; Magnaporthe oryzae; Cotesia flavipes; Cotesia marginiventris; Grindelia Xpaludosa; Grindelia chiloensis; Grindelia fastigiata; Grindelia lanceolata; Grindelia squarrosa; Leucadendron coniferum; Leucadendron salicifolium; Leucadendron tinctum; Leucadendron meridianum; Laodelphax striatellus; Sogatella furcifera; Phoxinus eos; Phoxinus rigidus; Phoxinus brevispinosus; Phoxinus bicolor; Tetranychus urticae; Tetranychus turkestani; Tetranychus ludeni; Tetranychus neocaledonicus; Tetranychus amicus; Amphitetranychus viennensis; Eotetranychus rubiphilus; Eotetranychus tiliarium; Oligonychus perseae; Panonychus citri; Bryobia rubrioculus; Schizonobia bundi; Petrobia harti; Xerus princeps; Spermophilus tridecemlineatus and Sciurus carolinensis
    corecore