338 research outputs found

    Circadian Organization in Hemimetabolous Insects

    Get PDF
    The circadian system of hemimetabolous insects is reviewed in respect to the locus of the circadian clock and multioscillatory organization. Because of relatively easy access to the nervous system, the neuronal organization of the clock system in hemimetabolous insects has been studied, yielding identification of the compound eye as the major photoreceptor for entrainment and the optic lobe for the circadian clock locus. The clock site within the optic lobe is inconsistent among reported species; in cockroaches the lobula was previously thought to be a most likely clock locus but accessory medulla is recently stressed to be a clock center, while more distal part of the optic lobe including the lamina and the outer medulla area for the cricket. Identification of the clock cells needs further critical studies. Although each optic lobe clock seems functionally identical, in respect to photic entrainment and generation of the rhythm, the bilaterally paired clocks form a functional unit. They interact to produce a stable time structure within individual insects by exchanging photic and temporal information through neural pathways, in which serotonin and pigment-dispersing factor (PDF) are involved as chemical messengers. The mutual interaction also plays an important role in seasonal adaptation of the rhythm

    Addressing the ‘hypoxia paradox’ in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues

    Get PDF
    Background: Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called ‘long COVID’ and ‘neuroCOVID’, becomes increasingly evident. Main body of the abstract: Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term ‘hypoxia paradox’. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this ‘hypoxia paradox’ caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. Short conclusion: Substitution of EPO may—among other beneficial EPO effects in severe COVID-19—circumvent downstream consequences of the ‘hypoxia paradox’. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warrante

    Inducing sterile pyramidal neuronal death in mice to model distinct aspects of gray matter encephalitis

    Get PDF
    Up to one person in a population of 10,000 is diagnosed once in lifetime with an encephalitis, in 50–70% of unknown origin. Recognized causes amount to 20–50% viral infections. Approximately one third of affected subjects develops moderate and severe subsequent damage. Several neurotropic viruses can directly infect pyramidal neurons and induce neuronal death in cortex and hippocampus. The resulting encephalitic syndromes are frequently associated with cognitive deterioration and dementia, but involve numerous parallel and downstream cellular and molecular events that make the interpretation of direct consequences of sudden pyramidal neuronal loss difficult. This, however, would be pivotal for understanding how neuroinflammatory processes initiate the development of neurodegeneration, and thus for targeted prophylactic and therapeutic interventions. Here we utilized adult male NexCre‑ ERT2xRosa26-eGFP-DTA (= ‘DTA’) mice for the induction of a sterile encephalitis by diphtheria toxin-mediated ablation of cortical and hippocampal pyramidal neurons which also recruits immune cells into gray matter. We report multifaceted aftereffects of this defined process, including the expected pathology of classical hippocampal behaviors, evaluated in Morris water maze, but also of (pre)frontal circuit function, assessed by prepulse inhibition. Importantly, we modelled in encephalitis mice novel translationally relevant sequelae, namely altered social interaction/cognition, accompanied by compromised thermoreaction to social stimuli as convenient readout of parallel autonomic nervous system (dys)function. High resolution magnetic resonance imaging disclosed distinct abnormalities in brain dimensions, including cortical and hippocampal layering, as well as of cerebral blood flow and volume. Fluorescent tracer injection, immunohistochemistry and brain flow cytometry revealed persistent blood–brain-barrier perturbance and chronic brain inflammation. Surprisingly, blood flow cytometry showed no abnormalities in circulating major immune cell subsets and plasma high-mobility group box 1 (HMGB1) as proinflammatory marker remained unchanged. The present experimental work, analyzing multidimensional outcomes of direct pyramidal neuronal loss, will open new avenues for urgently needed encephalitis research

    Veien inn til sykehus for pasienter innlagt ved mistanke om akutt hjerneslag

    Get PDF
    Bakgrunn: Hjerneslag er en tidskritisk tilstand, men fremdeles ankommer under halvparten av pasientene sykehus innen fire timer fra symptomdebut. En mulig forklaring på forsinkelsen kan være at første kontakt med helsevesenet er hos legevakten eller fastlegen. Hensikt: Hensikten med denne studien var å kartlegge innleggende instans for pasienter ved mistanke om akutt hjerneslag før de kom til akuttmottaket ved Oslo universitetssykehus OUS på Ullevål. Vi ville også kartlegge hvorvidt innleggelsesinstans kunne korreleres til slagdiagnose ved utskrivelse. Metode: En retrospektiv observasjonsstudie identifiserte alle pasienter der mistanke om hjerneslag var innleggelsesårsaken på akuttmottaket ved Ullevål i 2018. Vi grupperte pasientene etter innleggende instans: ambulanse, legevakt, fastlege eller direkte kontakt. Vi sammenliknet utskrivelsesdiagnoser «hjerneslag» eller «ikke hjerneslag» etter innleggende instans og fordelte på alder ved å bruke kjikvadrattest. Resultat: Totalt 1399 pasienter med mistanke om hjerneslag ble innlagt, hvorav 594 42 prosent) fikk en hjerneslagdiagnose. Medianalderen var 72 år, og 52 prosent var kvinner. Halvparten ble innlagt direkte med ambulanse, en tredel via legevakten og 12 prosent fra fastlegen. Signifikant flere pasienter av de som ble innlagt med ambulanse 51 prosent), fikk hjerneslag som utskrivelsesdiagnose sammenliknet med pasienter som kom via henholdsvis legevakt 29 prosent) eller fastlege 40 prosent) (kjikvadrat p < 0,001. Pasientene som ble innlagt med ambulanse, var signifikant eldre enn pasientene som kom via legevakten 72 år versus 65 år, p < 0,001. Konklusjon: Kun halvparten av pasientene med symptomer på mistenkt hjerneslag ble innlagt med ambulanse. Pasientene som ble innlagt direkte med ambulanse, ble oftere utskrevet med en hjerneslagdiagnose. Vi trenger mer kunnskap om årsakene til at de resterende pasientene kom via fastlegen eller legevakten.publishedVersio

    SUMO-1 possesses DNA binding activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conjugation of small ubiquitin-related modifiers (SUMOs) is a frequent post-translational modification of proteins. SUMOs can also temporally associate with protein-targets via SUMO binding motifs (SBMs). Protein sumoylation has been identified as an important regulatory mechanism especially in the regulation of transcription and the maintenance of genome stability. The precise molecular mechanisms by which SUMO conjugation and association act are, however, not understood.</p> <p>Findings</p> <p>Using NMR spectroscopy and protein-DNA cross-linking experiments, we demonstrate here that SUMO-1 can specifically interact with dsDNA in a sequence-independent fashion. We also show that SUMO-1 binding to DNA can compete with other protein-DNA interactions at the example of the regulatory domain of Thymine-DNA Glycosylase and, based on these competition studies, estimate the DNA binding constant of SUMO1 in the range 1 mM.</p> <p>Conclusion</p> <p>This finding provides an important insight into how SUMO-1 might exert its activity. SUMO-1 might play a general role in destabilizing DNA bound protein complexes thereby operating in a bottle-opener way of fashion, explaining its pivotal role in regulating the activity of many central transcription and DNA repair complexes.</p

    SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair

    Get PDF
    Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress

    DNA glycosylases: in DNA repair and beyond

    Get PDF
    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity

    Dietary Modulation of Drosophila Sleep-Wake Behaviour

    Get PDF
    Background A complex relationship exists between diet and sleep but despite its impact on human health, this relationship remains uncharacterized and poorly understood. Drosophila melanogaster is an important model for the study of metabolism and behaviour, however the effect of diet upon Drosophila sleep remains largely unaddressed. Methodology/Principal Findings Using automated behavioural monitoring, a capillary feeding assay and pharmacological treatments, we examined the effect of dietary yeast and sucrose upon Drosophila sleep-wake behaviour for three consecutive days. We found that dietary yeast deconsolidated the sleep-wake behaviour of flies by promoting arousal from sleep in males and shortening periods of locomotor activity in females. We also demonstrate that arousal from nocturnal sleep exhibits a significant ultradian rhythmicity with a periodicity of 85 minutes. Increasing the dietary sucrose concentration from 5% to 35% had no effect on total sucrose ingestion per day nor any affect on arousal, however it did lengthen the time that males and females remained active. Higher dietary sucrose led to reduced total sleep by male but not female flies. Locomotor activity was reduced by feeding flies Metformin, a drug that inhibits oxidative phosphorylation, however Metformin did not affect any aspects of sleep. Conclusions We conclude that arousal from sleep is under ultradian control and regulated in a sex-dependent manner by dietary yeast and that dietary sucrose regulates the length of time that flies sustain periods of wakefulness. These findings highlight Drosophila as an important model with which to understand how diet impacts upon sleep and wakefulness in mammals and humans
    corecore