1,485 research outputs found

    A Chandra study of particle acceleration in the multiple hotspots of nearby radio galaxies

    Full text link
    We present Chandra observations of a small sample of nearby classical double radio galaxies which have more than one radio hotspot in at least one of their lobes. The X-ray emission from the hotspots of these comparatively low-power objects is expected to be synchrotron in origin, and therefore to provide information about the locations of high-energy particle acceleration. In some models of the relationship between the jet and hotspot the hotspots that are not the current jet termination point should be detached from the energy supply from the active nucleus and therefore not capable of accelerating particles to high energies. We find that in fact some secondary hotspots are X-ray sources, and thus probably locations for high-energy particle acceleration after the initial jet termination shock. In detail, though, we show that the spatial structures seen in X-ray are not consistent with naive expectations from a simple shock model: the current locations of the acceleration of the highest-energy observable particles in powerful radio galaxies need not be coincident with the peaks of radio or even optical emission.Comment: Accepted for ApJ. 33 pages, 8 figures inc. 2 in colo

    Sub-Arcsecond Imaging of 3C123:108-GHz Continuum Observations of the Radio Hotspots

    Get PDF
    We present the results of sub-arcsecond 108 GHz continuum interferometric observations toward the radio luminous galaxy 3C123. Using multi-array observations, we utilize the high u,v dynamic range of the BIMA millimeter array to sample fully spatial scales ranging from 0.5" to 50". This allows us to make one-to-one comparisons of millimeter-wavelength emission in the radio lobes and hotspots to VLA centimeter observations at 1.4, 4.9, 8.4, and 15 GHz. At 108 GHz, the bright, eastern double hotspot in the southern lobe is resolved. This is only the second time that a multiple hotspot region has been resolved in the millimeter regime. We model the synchrotron spectra of the hotspots and radio lobes using simple broken power-law models with high energy cutoffs, and discuss the hotspot spectra and their implications for models of multiple hotspot formation.Comment: 16 pages, 3 Figures, ApJ Accepte

    Measuring fidelity to behavioural support delivery for smoking cessation and its association with outcomes

    Get PDF
    BACKGROUND AND AIMS: Behavioural support increases smoking cessation in clinical settings, but effect sizes differ among providers, due possibly to variations in delivery. This study evaluates a measure ('fidelity index') intended to capture fidelity to delivery of content- and interaction-based items of a behavioural support (BS) for smoking cessation and the association of fidelity with quit rates. METHODS: A fidelity index for scoring the adherence and quality domains of a specific BS intervention, '5As for quit', was developed by classifying the intervention components using the taxonomy of behaviour change techniques. The index was applied to code 154 BS sessions audiotaped among 18 chest clinics in Pakistan to assess their fidelity and explore reliability of coding. The association between intervention fidelity and successful quit achieved by the same providers in a previous study was explored using regression analysis. RESULTS: The index represented two domains: adherence to delivery of content-based activities of 5As (37 items) and quality of interaction-based activities (eight items). The intercoder reliability was good for content-based (average Krippendorff's α = 0.80) and moderate for interaction-based (average Krippendorff's α = 0.66) items. Approximately 70% (intraclass correlation coefficient: adherence scores = 0.72, quality scores = 0.71) of variation in BS delivery was contributed by providers, which increased to 97% (g-coefficient: adherence scores = 0.973, quality scores = 0.974) after accounting for other sources of variation. Higher quit rates were positively associated with average quality scores [risk ratio = 2.15; 95% confidence interval (CI) = 1.43-3.24], but negatively associated with average adherence scores (risk ratio = 0.55; 95% CI = 0.40-0.77) within services. CONCLUSIONS: The fidelity index is a reliable measure for quantifying intervention fidelity of delivering smoking cessation behavioural support. Recommended revisions of the fidelity index include incorporation of additional interaction-based items, such as the relational techniques used in motivational interviewing

    Canonical Particle Acceleration in FRI Radio Galaxies

    Full text link
    Matched resolution multi-frequency VLA observations of four radio galaxies are used to derive the asymptotic low energy slope of the relativistic electron distribution. Where available, low energy slopes are also determined for other sources in the literature. They provide information on the acceleration physics independent of radiative and other losses, which confuse measurements of the synchrotron spectra in most radio, optical and X-ray studies. We find a narrow range of inferred low energy electron energy slopes, n(E)=const*E^-2.1 for the currently small sample of lower luminosity sources classified as FRI (not classical doubles). This distribution is close to, but apparently inconsistent with, the test particle limit of n(E)=const*E^-2.0 expected from strong diffusive shock acceleration in the non-relativistic limit. Relativistic shocks or those modified by the back-pressure of efficiently accelerated cosmic rays are two alternatives to produce somewhat steeper spectra. We note for further study the possiblity of acceleration through shocks, turbulence or shear in the flaring/brightening regions in FRI jets as they move away from the nucleus. Jets on pc scales and the collimated jets and hot spots of FRII (classical double) sources would be governed by different acceleration sites and mechanisms; they appear to show a much wider range of spectra than for FRI sources.Comment: 16 figures, including 5 color. Accepted to Astrophysical Journa

    Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics, © 2017 ESO.The phase of radio galaxy evolution after the jets have switched off, often referred to as the remnant phase, is poorly understood and very few sources in this phase are known. In this work we present an extensive search for remnant radio galaxies in the Lockman Hole, a well-studied extragalactic field. We create mock catalogues of low-power radio galaxies based on Monte Carlo simulations to derive first-order predictions of the fraction of remnants in radio flux limited samples for comparison with our Lockman-Hole sample. We have combined LOFAR observations at 150 MHz with public surveys at higher frequencies to perform a complete selection and have used, for the first time, a combination of spectral criteria (e.g. the classical ultra-steep spectral index and high spectral curvature) as well as morphological criteria (e.g. low radio core prominence and relaxed shapes). Mock catalogues of radio galaxies are created based on existing spectral and dynamical evolution models combined with observed source properties. We have identified 23 candidate remnant radio galaxies which cover a variety of morphologies and spectral characteristics. We suggest that these different properties are related to different stages of the remnant evolution. We find that ultra-steep spectrum remnants represent only a fraction of our remnant sample suggesting a very rapid luminosity evolution of the radio plasma. Results from mock catalogues demonstrate the importance of dynamical evolution in the remnant phase of low-power radio galaxies to obtain fractions of remnant sources consistent with our observations. Moreover, these results confirm that ultra-steep spectrum remnants represent only a subset of the entire population (\sim50%) when frequencies higher than 1400 MHz are not included in the selection process, and that they are biased towards old ages.Peer reviewe

    A physical model for active galactic nuclei with double-peaked broad emission lines

    Get PDF
    The double-peaked broad emission lines are usually thought to be linked to accretion disks, however, the local viscous heating in the line-emitting disk portion is usually insufficient for the observed double-peaked broad-line luminosity in most sources. Our calculations show that only a small fraction (< 2.3 per cent) of the radiation from the RIAF in the inner region of the disk can photo-ionize the line-emitting disk portion, because the solid angle of the outer disk portion subtended to the inner region of the RIAF is too small. We propose that only those AGNs with sufficient matter above the disk (slowly moving jets or outflows) can scatter enough photons radiated from the inner disk region to the outer line-emitting disk portion. Our model predicts a power-law r-dependent line emissivity with an index ~2.5, which is consistent with \beta~2-3 required by the model fittings for double-peaked line profiles. Using a sample of radio-loud double-peaked line emitters, we show that the outer disk regions can be efficiently illuminated by the photons scattered from the electron-positron jets with \gamma_j<2. It is consistent with the fact that no double-peaked emission line is present in strong radio quasars with relativistic jets. For radio-quiet counterparts, slow outflows with Thomson scattering depth ~0.2 can scatter sufficient photons to the line-emitting regions. This model can therefore solve the energy budget problem for double-peaked line emitters.Comment: 7 pages, accepted for publication in Ap

    The LOFAR Two-metre Sky Survey: the radio view of the cosmic star formation history

    Get PDF
    © 2023 Oxford University Press. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stad1602We present a detailed study of the cosmic star formation history over 9090 per cent of cosmic time (0z40\lesssim z\lesssim4), using deep, radio continuum observations that probe star formation activity independent of dust. The Low Frequency Array Two Metre Sky Survey has imaged three well-studied extragalactic fields, Elais-N1, Bo\"otes and the Lockman Hole, reaching 20μJy/beam\sim20\,\mu\rm{Jy/beam} rms sensitivity at 150MHz150\,\rm{MHz}. The availability of high-quality ancillary data from ultraviolet to far-infrared wavelengths has enabled accurate photometric redshifts and the robust separation of radio-bright AGN from their star-forming counterparts. We capitalise on this unique combination of deep, wide fields and robustly-selected star-forming galaxies to construct radio luminosity functions and derive the cosmic star formation rate density. We carefully constrain and correct for scatter in the L150MHzSFRL_{150\,\rm{MHz}}-\rm{SFR} relation, which we find to be 0.3dex\sim0.3\,\rm{dex}. Our derived star formation rate density lies between previous measurements at all redshifts studied. We derive higher star formation rate densities between z0z\sim0 and z3z\sim3 than are typically inferred from short wavelength emission; at earlier times, this discrepancy is reduced. Our measurements are generally in good agreement with far-infrared and radio-based studies, with small offsets resulting from differing star formation rate calibrations.Peer reviewe

    Radio spectral properties and jet duty cycle in the restarted radio galaxy 3C388

    Get PDF
    © ESO 2020. The original publication is available at https://doi.org/10.1051/0004-6361/202037457.Context. Restarted radio galaxies represent a unique tool for investigating the duty cycle of the jet activity in active galactic nuclei (AGN). The radio galaxy 3C388 has long been claimed to be a peculiar example of an AGN with multi-epoch activity because it shows a very sharp discontinuity in the GHz spectral index distribution of its lobes. Aims. We present here for the first time a spatially resolved study of the radio spectrum of 3C388 down to MHz frequencies aimed at investigating the radiative age of the source and constraining its duty cycle. Methods. We used new low-frequency observations at 144 MHz performed with the Low Frequency Array and at 350 MHz performed with the Very Large Array that we combined with archival data at higher frequencies (614, 1400, and 4850 MHz). Results. We find that the spectral indices in the lower frequency range, 144-614 MHz, have flatter values (αlow ∼0.55-1.14) than those observed in the higher frequency range, 1400-4850 MHz, (αhigh ∼0.75-1.57), but they follow the same distribution across the lobes, with a systematic steepening towards the edges. However, the spectral shape throughout the source is not uniform and often deviates from standard models. This suggests that mixing of different particle populations occurs, although it remains difficult to understand whether this is caused by observational limitations (insufficient spatial resolution and/or projection effects) or by the intrinsic presence of multiple particle populations, which might be related to the two different outbursts. Conclusions. Using single-injection radiative models, we compute that the total source age is ≲ 80 Myr and that the duty cycle is about ton/ttot ∼ 60%, which is enough to prevent the intracluster medium from cooling, according to X-ray estimates. While to date the radio spectral distribution of 3C388 remains a rare case among radio galaxies, multi-frequency surveys performed with new-generation instruments will soon allow us to investigate whether more sources with the same characteristics exist.Peer reviewe

    Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 J. K. Banfield, H. Andernach, A. D. Kapińska, L. Rudnick, M. J. Hardcastle, G. Cotter, S. Vaughan, T. W. Jones, I. Heywood, J. D. Wing, O. I. Wong, T. Matorny, I. A. Terentev, Á. R. López-Sánchez, R. P. Norris, N. Seymour, S. S. Shabala, and K. W. Willett. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. The version of record is available on line at doi: 10.1093/mnras/stw1067We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of z=0.0897z=0.0897 for the E0-type host galaxy, 2MASX J08231289+0333016, leading to Mr=22.6_r = -22.6 and a 1.41.4\,GHz radio luminosity density of L1.4=5.5×1024L_{\rm 1.4} = 5.5\times10^{24} W Hz1^{-1}. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley (FR) classes I and II. The projected largest angular size of 8\approx8\,arcmin corresponds to 800800\,kpc and the full length of the source along the curved jets/trails is 1.11.1\,Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301,at 1.22.6×10431.2-2.6\times10^{43} erg s1^{-1} for assumed intra-cluster medium temperatures of 1.05.01.0-5.0\,keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with 10710^7\,yrs in between. This reinforces the idea that an association between RGZ J082312.9+033301, and the newly discovered poor cluster exists.Peer reviewe

    Exploring the radio-loudness of SDSS quasars with spectral stacking

    Get PDF
    © 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We use new 144 MHz observations over 5634 deg 2 from the LOFAR (Low Frequency Array) Two-metre Sky Survey (LoTSS) to compile the largest sample of uniformly selected, spectroscopically confirmed quasars from the 14th data release of the Sloan Digital Sky Survey (SDSS-DR14). Using the classical definition of radio loudness, R = log (L 1.4GHz/L i), we identify 3697 radio-loud (RL) and 111 132 radio-quiet (RQ) sources at 0.6 < z < 3.4. To study their properties, we develop a new rest-frame spectral stacking algorithm, designed with forthcoming massively multiplexed spectroscopic surveys in mind, and use it to create high signal-to-noise composite spectra of each class, matched in redshift and absolute i-band magnitude. We show that RL quasars have redder continuum and enhanced [O II] emission than their RQ counterparts. These results persist when additionally matching in black hole mass, suggesting that this parameter is not the defining factor in making a quasi-stellar object (QSO) RL. We find that these features are not gradually varying as a function of radio loudness, but are maintained even when probing deeper into the RQ population, indicating that a clear-cut division in radio loudness is not apparent. Upon examining the star formation rates (SFRs) inferred from the [O II] emission line, with the contribution from active galactic nucleus removed using the [Ne V] line, we find that RL quasars have a significant excess of star formation relative to RQ quasars out to z = 1.9 at least. Given our findings, we suggest that RL sources either preferably reside in gas-rich systems with rapidly spinning black holes, or represent an earlier obscured phase of QSO evolution.Peer reviewe
    corecore