667 research outputs found

    Binding potentials for vapour nanobubbles on surfaces using density functional theory

    Full text link
    We calculate density profiles of a simple model fluid in contact with a planar surface using density functional theory (DFT), in particular for the case where there is a vapour layer intruding between the wall and the bulk liquid. We apply the method of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)] to calculate the density profiles for varying (specified) amounts of the vapour adsorbed at the wall. This is equivalent to varying the thickness hh of the vapour at the surface. From the resulting sequence of density profiles we calculate the thermodynamic grand potential as hh is varied and thereby determine the binding potential as a function of hh. The binding potential obtained via this coarse-graining approach allows us to determine the disjoining pressure in the film and also to predict the shape of vapour nano-bubbles on the surface. Our microscopic DFT based approach captures information from length scales much smaller than some commonly used models in continuum mechanics.Comment: 15 pages, 15 figure

    VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing

    Full text link
    The hardware implementation of deep neural networks (DNNs) has recently received tremendous attention: many applications in fact require high-speed operations that suit a hardware implementation. However, numerous elements and complex interconnections are usually required, leading to a large area occupation and copious power consumption. Stochastic computing has shown promising results for low-power area-efficient hardware implementations, even though existing stochastic algorithms require long streams that cause long latencies. In this paper, we propose an integer form of stochastic computation and introduce some elementary circuits. We then propose an efficient implementation of a DNN based on integral stochastic computing. The proposed architecture has been implemented on a Virtex7 FPGA, resulting in 45% and 62% average reductions in area and latency compared to the best reported architecture in literature. We also synthesize the circuits in a 65 nm CMOS technology and we show that the proposed integral stochastic architecture results in up to 21% reduction in energy consumption compared to the binary radix implementation at the same misclassification rate. Due to fault-tolerant nature of stochastic architectures, we also consider a quasi-synchronous implementation which yields 33% reduction in energy consumption w.r.t. the binary radix implementation without any compromise on performance.Comment: 11 pages, 12 figure

    Stochastic Simulated Quantum Annealing for Fast Solution of Combinatorial Optimization Problems

    Full text link
    In this paper, we introduce stochastic simulated quantum annealing (SSQA) for large-scale combinatorial optimization problems. SSQA is designed based on stochastic computing and quantum Monte Carlo, which can simulate quantum annealing (QA) by using multiple replicas of spins (probabilistic bits) in classical computing. The use of stochastic computing leads to an efficient parallel spin-state update algorithm, enabling quick search for a solution around the global minimum energy. Therefore, SSQA realizes quantum-like annealing for large-scale problems and can handle fully connected models in combinatorial optimization, unlike QA. The proposed method is evaluated in MATLAB on graph isomorphism problems, which are typical combinatorial optimization problems. The proposed method achieves a convergence speed an order of magnitude faster than a conventional stochastic simulaated annealing method. Additionally, it can handle a 100-times larger problem size compared to QA and a 25-times larger problem size compared to a traditional SA method, respectively, for similar convergence probabilities.Comment: 14 pages, 8 figure

    Tunable high-average-power optical parametric oscillators near 2 μm

    Get PDF
    We report on the development of high-average-power nanosecond and picosecond laser sources tunable near 2 μm based on optical parametric oscillators (OPOs) pumped by solid-state Nd:YAG and Yb-fiber lasers at 1.064 μm. By exploiting 50-mm-long MgO-doped lithium niobate (MgO:PPLN) as the nonlinear crystal and operating the OPO in a near-degenerate doubly resonant configuration with intracavity wavelength selection elements, we have generated tunable high-average-power radiation across 1880–2451 nm in high spectral and spatial beam quality with excellent output stability. In nanosecond operation, pumping with a Q-switched Nd:YAG laser and using an intracavity prism for spectral control, we have generated more than 2 W of average power in pulses of 10 ns duration at 80 kHz repetition rate with narrow linewidth (<3 nm), with M2 < 2.8, and a passive power stability better than 2.2% rms over 1 h. In picosecond operation, pumping with a mode-locked Ybfiber laser and using a diffraction grating as the wavelength selection element, we have generated more than 5 W of average power in pulses of 20 ps at 80 MHz repetition rate with narrow bandwidth (∼2.5 nm), with M2 < 1.8 and a passive power stability better than 1.3% rms over 2 h. The demonstrated sources represent viable alternatives to Tm3 ∕Ho3 -doped solid-state and fiber lasers for the generation of high-power radiation in the ∼2 μm spectral range.Peer ReviewedPostprint (author's final draft

    Carbon network evolution from dimers to sheets in superconducting ytrrium dicarbide under pressure

    Get PDF
    Carbon-bearing compounds display intriguing structural diversity, due to variations in hybrid bonding of carbon. Here, first-principles calculations and unbiased structure searches on yttrium dicarbide at pressure reveal four new structures with varying carbon polymerisation, in addition to the experimentally observed high-temperature low-pressure I4/mmm dimer phase. At low pressures, a metallic C2/m phase (four-member single-chain carbide) is stable, which transforms into a Pnma phase (single-chain carbide) upon increasing pressure, with further transformation to an Immm structure (double-chain carbide) at 54 GPa and then to a P6/mmm phase (sheet carbide) at 267 GPa. Yttrium dicarbide is structurally diverse, with carbon bonded as dimers (at lowest pressure), four-member single chains, infinite single chains, double chains and eventually sheet structures on compression. Electron–phonon coupling calculations indicate that the high-pressure phases are superconducting. Our results aid the understanding and design of new superconductors and illuminate pressure-induced carbon polymerisation in carbides

    Quantum structural fluxion in superconducting lanthanum polyhydride

    Get PDF
    The discovery of 250-kelvin superconducting lanthanum polyhydride under high pressure marked a significant advance toward the realization of a room‐temperature superconductor. X-ray diffraction (XRD) studies reveal a nonstoichiometric LaH9.6 or LaH10±δ polyhydride responsible for the superconductivity, which in the literature is commonly treated as LaH10 without accounting for stoichiometric defects. Here, we discover significant nuclear quantum effects (NQE) in this polyhydride, and demonstrate that a minor amount of stoichiometric defects will cause quantum proton diffusion in the otherwise rigid lanthanum lattice in the ground state. The diffusion coefficient reaches ~10−7 cm2/s in LaH9.63 at 150 gigapascals and 240 kelvin, approaching the upper bound value of interstitial hydrides at comparable temperatures. A puzzling phenomenon observed in previous experiments, the positive pressure dependence of the superconducting critical temperature Tc below 150 gigapascals, is explained by a modulation of the electronic structure due to a premature distortion of the hydrogen lattice in this quantum fluxional structure upon decompression, and resulting changes of the electron-phonon coupling. This finding suggests the coexistence of the quantum proton fluxion and hydrogen-induced superconductivity in this lanthanum polyhydride, and leads to an understanding of the structural nature and superconductivity of nonstoichiomectric hydrogen-rich materials.The project is supported by the National Natural Science Foundation of China (Grant No. 11974135, 11874176, 12174170, and 12074138), the Natural Sciences and Engineering Research Council of Canada, the EPSRC through grants EP/P022596/1, and EP/S021981/1, and the startup funds of the office of the Dean of SASN of Rutgers University-Newark. P. T. S. thanks the Department of Materials Science and Metallurgy at the University of Cambridge for generous funding. The work of P. T. S. is further supported through a Trinity Hall research studentship. I. E. acknowledges financial support by the European Research Council (ERC) under the EuropeanUnion’sHorizon 2020 research and innovation program (grant agreement no. 802533)

    Quasi-molecular and atomic phases of dense solid hydrogen

    Full text link
    The high-pressure phases of solid hydrogen are of fundamental interest and relevant to the interior of giant planets; however, knowledge of these phases is far from complete. Particle swarm optimization (PSO) techniques were applied to a structural search, yielding hitherto unexpected high-pressure phases of solid hydrogen at pressures up to 5 TPa. An exotic quasi-molecular mC24 structure (space group C2/c, stable at 0.47-0.59 TPa) with two types of intramolecular bonds was predicted, providing a deeper understanding of molecular dissociation in solid hydrogen, which has been a mystery for decades. We further predicted the existence of two atomic phases: (i) the oC12 structure (space group Cmcm, stable at > 2.1 TPa), consisting of planar H3 clusters, and (ii) the cI16 structure, previously observed in lithium and sodium, stable above 3.5 TPa upon consideration of the zero-point energy. This work clearly revised the known zero-temperature and high-pressure (>0.47 TPa) phase diagram for solid hydrogen and has implications for the constituent structures of giant planets.Comment: accepted in The Journal of Physical Chemistr
    corecore