The high-pressure phases of solid hydrogen are of fundamental interest and
relevant to the interior of giant planets; however, knowledge of these phases
is far from complete. Particle swarm optimization (PSO) techniques were applied
to a structural search, yielding hitherto unexpected high-pressure phases of
solid hydrogen at pressures up to 5 TPa. An exotic quasi-molecular mC24
structure (space group C2/c, stable at 0.47-0.59 TPa) with two types of
intramolecular bonds was predicted, providing a deeper understanding of
molecular dissociation in solid hydrogen, which has been a mystery for decades.
We further predicted the existence of two atomic phases: (i) the oC12 structure
(space group Cmcm, stable at > 2.1 TPa), consisting of planar H3 clusters, and
(ii) the cI16 structure, previously observed in lithium and sodium, stable
above 3.5 TPa upon consideration of the zero-point energy. This work clearly
revised the known zero-temperature and high-pressure (>0.47 TPa) phase diagram
for solid hydrogen and has implications for the constituent structures of giant
planets.Comment: accepted in The Journal of Physical Chemistr