79 research outputs found

    Advances in membrane tafficking and endosomal signaling of G protein-coupled receptors

    Get PDF
    The integration of GPCR signaling with membrane trafficking, as a single orchestrated system, is a theme increasingly evident with the growing reports of GPCR endosomal signaling. Once viewed as a mechanism to regulate cell surface heterotrimeric G protein signaling, the endocytic trafficking system is complex, highly compartmentalized, yet deeply interconnected with cell signaling. The organization of receptors into distinct plasma membrane signalosomes, biochemically distinct endosomal populations, endosomal microdomains, and its communication with distinct subcellular organelles such as the Golgi provides multiple unique signaling platforms that are critical for specifying receptor function physiologically and pathophysiologically. In this chapter I discuss our emerging understanding in the endocytic trafficking systems employed by GPCRs and their novel roles in spatial control of signaling. Given the extensive roles that GPCRs play in vivo, these evolving models are starting to provide mechanistic understanding of distinct diseases and provide novel therapeutic avenues that are proving to be viable targets

    Impact of G protein-coupled receptor heteromers in endocrine systems.

    Get PDF
    The fine-tuning of endocrine homeostasis is regulated by dynamic receptor mediated processes. The superfamily of G protein-coupled receptors (GPCRs) have diverse roles in the modulation of all endocrine axes, thus understanding the mechanisms underpinning their functionality is paramount for treatment of endocrinopathies. Evidence over the last 20 years has highlighted homo and heteromerization as a key mode of mediating GPCR functional diversity. This review will discuss the concept of GPCR heteromerization and its relevance to endocrine function, detailing in vitro and in vivo evidence, and exploring current and potential pharmacological strategies for specific targeting of GPCR heteromers in endocrine heath and disease

    Super-resolution imaging as a method to Study GPCR dimers and higher-order oligomers

    Get PDF
    The study of G protein-coupled receptor (GPCR) dimers and higher order oligomers has unveiled mechanisms for receptors to diversify signaling and potentially uncover novel therapeutic targets. The functional and clinical significance of these receptorreceptor associations has been facilitated by the development of techniques and protocols, enabling researchers to unpick their function from the molecular interfaces, to demonstrating functional significance in vivo, in both health and disease. Here we describe our methodology to study GPCR oligomerization at the single molecule level via super-resolution imaging. Specifically, we have employed photoactivated localization microscopy, with photoactivatable dyes (PD-PALM) to visualize the spatial organization of these complexes to <10nm resolution, and the quantitation of GPCR monomer, dimer and oligomer in both homomeric and heteromeric forms. We provide guidelines on optimal sample preparation, imaging parameters and necessary controls for resolving and quantifying single molecule data. Finally, we discuss advantages and limitations of this imaging technique and its potential future applications to the study of GPCR function

    Identification of transmembrane domains that regulate spatial arrangements and activity of prokineticin receptor 2 dimers

    Get PDF
    The chemokine prokineticin 2 (PK2) activates its cognate G protein-coupled receptor (GPCR) PKR2 to elicit various downstream signaling pathways involved in diverse biological processes. Many GPCRs undergo dimerization that can modulate a number of functions including membrane delivery and signal transduction. The aim of this study was to elucidate the interface of PKR2 protomers within dimers by analyzing the ability of PKR2 transmembrane (TM) deletion mutants to associate with wild type (WT) PKR2 in yeast using co-immunoprecipitation and mammalian cells using bioluminescence resonance energy transfer. Deletion of TMs 5-7 resulted in a lack of detectable association with WT PKR2, but could associate with a truncated mutant lacking TMs 6-7 (TM1-5). Interestingly, TM1-5 modulated the distance, or organization, between protomers and positively regulated Gαs signaling and surface expression of WT PKR2. We propose that PKR2 protomers form type II dimers involving TMs 4 and 5, with a role for TM5 in modulation of PKR2 function

    Temporal reprogramming of calcium signalling via crosstalk of gonadotrophin receptors that associate as functionally asymmetric heteromers.

    Get PDF
    Signal crosstalk between distinct G protein-coupled receptors (GPCRs) is one mechanism that underlies pleiotropic signalling. Such crosstalk is also pertinent for GPCRs activated by gonadotrophic hormones; follicle-stimulating hormone (FSH) and luteinising hormone (LH), with specific relevance to female reproduction. Here, we demonstrate that gonadotrophin receptor crosstalk alters LH-induced Gαq/11-calcium profiles. LH-induced calcium signals in both heterologous and primary human granulosa cells were prolonged by FSHR coexpression via influx of extracellular calcium in a receptor specific manner. LHR/FSHR crosstalk involves Gαq/11 activation as a Gαq/11 inhibitor abolished calcium responses. Interestingly, the enhanced LH-mediated calcium signalling induced by FSHR co-expression was dependent on intracellular calcium store release and involved Gβγ. Biophysical analysis of receptor and Gαq interactions indicated that ligand-dependent association between LHR and Gαq was rearranged in the presence of FSHR, enabling FSHR to closely associate with Gαq following LHR activation. This suggests that crosstalk may occur via close associations as heteromers. Super-resolution imaging revealed that LHR and FSHR formed constitutive heteromers at the plasma membrane. Intriguingly, the ratio of LHR:FSHR in heterotetramers was specifically altered following LH treatment. We propose that functionally significant FSHR/LHR crosstalk reprograms LH-mediated calcium signalling at the interface of receptor-G protein via formation of asymmetric complexes

    A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate β-arrestin-biased signaling

    Get PDF
    The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through Gq/11and Gi/oto stimulate cytosolic calcium (Ca2+i) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-functionCASRmutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca2+iresponses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSRR680Gin HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca2+iresponses. Moreover, this gain of function in MAPK activity occurred independently of Gq/11and Gi/oand was mediated instead by a noncanonical pathway involving β-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced β-arrestin signaling by disrupting a salt bridge formed between Arg680and Glu767, which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through β-arrestin and the importance of the Arg680-Glu767salt bridge in mediating signaling bias

    Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G protein-coupled receptors

    Get PDF
    Agonist stimulation of G protein-coupled receptors (GPCRs) typically leads to phosphorylation of GPCRs and binding to multifunctional proteins called β-arrestins (βarrs). The GPCR-βarr interaction critically contributes to GPCR desensitization, endocytosis, and downstream signaling, and GPCR-βarr complex formation can be used as a generic readout of GPCR and βarr activation. Although several methods are currently available to monitor GPCR-βarr interactions, additional sensors to visualize them may expand the toolbox and complement existing methods. We have previously described antibody fragments (FABs) that recognize activated βarr1 upon its interaction with the vasopressin V2 receptor C-terminal phosphopeptide (V2Rpp). Here, we demonstrate that these FABs efficiently report the formation of a GPCR-βarr1 complex for a broad set of chimeric GPCRs harboring the V2R C terminus. We adapted these FABs to an intrabody format by converting them to single-chain variable fragments (ScFvs) and used them to monitor the localization and trafficking of βarr1 in live cells. We observed that upon agonist simulation of cells expressing chimeric GPCRs, these intrabodies first translocate to the cell surface, followed by trafficking into intracellular vesicles. The translocation pattern of intrabodies mirrored that of βarr1, and the intrabodies co-localized with βarr1 at the cell surface and in intracellular vesicles. Interestingly, we discovered that intrabody sensors can also report βarr1 recruitment and trafficking for several unmodified GPCRs. Our characterization of intrabody sensors for βarr1 recruitment and trafficking expands currently available approaches to visualize GPCR-βarr1 binding, which may help decipher additional aspects of GPCR signaling and regulation

    Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential

    Get PDF
    Arachidonic acid (AA) is a major PUFA that has been implicated in the regulation of adipogenesis. We examined the effect of a short exposure to AA at different stages of 3T3-L1 adipocyte differentiation. AA caused the upregulation of fatty acid binding protein 4 (FABP4/aP2) following 24 h of differentiation. This was mediated by the prostaglandin F2α (PGF2α), as inhibition of cyclooxygenases or PGF2α receptor signaling counteracted the AA-mediated aP2 induction. In addition, calcium, protein kinase C, and ERK are all key elements of the pathway through which AA induces the expression of aP2. We also show that treatment with AA during the first 24 h of differentiation upregulates the expression of the transcription factor Fos-related antigen 1 (Fra-1) via the same pathway. Finally, treatment with AA for 24 h at the beginning of the adipocyte differentiation is sufficient to inhibit the late stages of adipogenesis through a Fra-1-dependent pathway, as Fra-1 knockdown rescued adipogenesis. Our data show that AA is able to program the differentiation potential of preadipocytes by regulating gene expression at the early stages of adipogenesis

    Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy

    Get PDF
    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution
    corecore