362 research outputs found
Century-scale trends and seasonality in pH and temperature for shallow zones of the Bering Sea
No records exist to evaluate long-term pH dynamics in high-latitude oceans, which have the greatest probability of rapid acidification from anthropogenic CO2 emissions. We reconstructed both seasonal variability and anthropogenic change in seawater pH and temperature by using laser ablation high-resolution 2D images of stable boron isotopes (δ11B) on a long-lived coralline alga that grew continuously through the 20th century. Analyses focused on four multiannual growth segments. We show a long-term decline of 0.08 ± 0.01 pH units between the end of the 19th and 20th century, which is consistent with atmospheric CO2 records. Additionally, a strong seasonal cycle (∼0.22 pH units) is observed and interpreted as episodic annual pH increases caused by the consumption of CO2 during strong algal (kelp) growth in spring and summer. The rate of acidification intensifies from –0.006 ± 0.007 pH units per decade (between 1920s and 1960s) to –0.019 ± 0.009 pH units per decade (between 1960s and 1990s), and the episodic pH increases show a continuous shift to earlier times of the year throughout the centennial record. This is indicative of ecosystem shifts in shallow water algal productivity in this high-latitude habitat resulting from warming and acidification
Phenotypic plasticity of coralline algae in a High CO2world
It is important to understand how marine calcifying organisms may acclimatize to ocean acidification to assess their survival over the coming century. We cultured the cold water coralline algae, Lithothamnion glaciale, under elevated pCO2 (408, 566, 770, and 1024 μatm) for 10 months. The results show that the cell (inter and intra) wall thickness is maintained, but there is a reduction in growth rate (linear extension) at all elevated pCO2. Furthermore a decrease in Mg content at the two highest CO2 treatments was observed. Comparison between our data and that at 3 months from the same long-term experiment shows that the acclimation differs over time since at 3 months, the samples cultured under high pCO2 showed a reduction in the cell (inter and intra) wall thickness but a maintained growth rate. This suggests a reallocation of the energy budget between 3 and 10 months and highlights the high degree plasticity that is present. This might provide a selective advantage in future high CO2 world
Modeling of mode-locking in a laser with spatially separate gain media
We present a novel laser mode-locking scheme and discuss its unusual
properties and feasibility using a theoretical model. A large set of
single-frequency continuous-wave lasers oscillate by amplification in spatially
separated gain media. They are mutually phase-locked by nonlinear feedback from
a common saturable absorber. As a result, ultra short pulses are generated. The
new scheme offers three significant benefits: the light that is amplified in
each medium is continuous wave, thereby avoiding issues related to group
velocity dispersion and nonlinear effects that can perturb the pulse shape. The
set of frequencies on which the laser oscillates, and therefore the pulse
repetition rate, is controlled by the geometry of resonator-internal optical
elements, not by the cavity length. Finally, the bandwidth of the laser can be
controlled by switching gain modules on and off. This scheme offers a route to
mode-locked lasers with high average output power, repetition rates that can be
scaled into the THz range, and a bandwidth that can be dynamically controlled.
The approach is particularly suited for implementation using semiconductor
diode laser arrays.Comment: 13 pages, 5 figures, submitted to Optics Expres
A Tale Of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere
We use high-resolution observations of the Sun in Ca II H 3968 A from the
Solar Optical Telescope on Hinode to show that there are at least two types of
spicules that dominate the structure of the magnetic solar chromosphere. Both
types are tied to the relentless magnetoconvective driving in the photosphere,
but have very different dynamic properties. ``Type-I'' spicules are driven by
shock waves that form when global oscillations and convective flows leak into
the upper atmosphere along magnetic field lines on 3-7 minute timescales.
``Type-II'' spicules are much more dynamic: they form rapidly (in ~10s), are
very thin (<200km wide), have lifetimes of 10-150s (at any one height) and seem
to be rapidly heated to (at least) transition region temperatures, sending
material through the chromosphere at speeds of order 50-150 km/s. The
properties of Type II spicules suggest a formation process that is a
consequence of magnetic reconnection, typically in the vicinity of magnetic
flux concentrations in plage and network. Both types of spicules are observed
to carry Alfven waves with significant amplitudes of order 20 km/s.Comment: 8 pages, 5 figures, accepted for Hinode special issue of PAS
Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption
The eruption that started off the south coast of El Hierro, Canary Islands, in October 2011 has emitted intriguing eruption products found floating in the sea. These specimens appeared as floating volcanic "bombs" that have in the meantime been termed "restingolites" (after the close-by village of La Restinga) and exhibit cores of white and porous pumice-like material. Currently the nature and origin of these "floating stones" is vigorously debated among researchers, with important implications for the interpretation of the hazard potential of the ongoing eruption. The "restingolites" have been proposed to be either (i) juvenile high-silica magma (e.g. rhyolite), (ii) remelted magmatic material (trachyte), (iii) altered volcanic rock, or (iv) reheated hyaloclastites or zeolite from the submarine slopes of El Hierro. Here, we provide evidence that supports yet a different conclusion. We have collected and analysed the structure and composition of samples and compared the results to previous work on similar rocks found in the archipelago. Based on their high silica content, the lack of igneous trace element signatures, and the presence of remnant quartz crystals, jasper fragments and carbonate relicts, we conclude that "restingolites" are in fact xenoliths from pre-island sedimentary rocks that were picked up and heated by the ascending magma causing them to partially melt and vesiculate. They hence represent messengers from depth that help us to understand the interaction between ascending magma and crustal lithologies in the Canary Islands as well as in similar Atlantic islands that rest on sediment/covered ocean crust (e.g. Cape Verdes, Azores). The occurrence of these "restingolites" does therefore not indicate the presence of an explosive high-silica magma that is involved in the ongoing eruption
Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients
Controlling ultrafast magnetization dynamics by a femtosecond laser is
attracting interest both in fundamental science and industry because of the
potential to achieve magnetic domain switching at ever advanced speed. Here we
report experiments illustrating the ultrastrong and fully coherent light-matter
coupling of a high-field single-cycle THz transient to the magnetization vector
in a ferromagnetic thin film. We could visualize magnetization dynamics which
occur on a timescale of the THz laser cycle and two orders of magnitude faster
than the natural precession response of electrons to an external magnetic
field, given by the Larmor frequency. We show that for one particular
scattering geometry the strong coherent optical coupling can be described
within the framework of a renormalized Landau Lifshitz equation. In addition to
fundamentally new insights to ultrafast magnetization dynamics the coherent
interaction allows for retrieving the complex time-frequency magnetic
properties and points out new opportunities in data storage technology towards
significantly higher storage speed.Comment: 25 page
Homologous Helical Jets: Observations by IRIS, SDO and Hinode and Magnetic Modeling with Data-Driven Simulations
We report on observations of recurrent jets by instruments onboard the
Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO)
and Hinode spacecrafts. Over a 4-hour period on July 21st 2013, recurrent
coronal jets were observed to emanate from NOAA Active Region 11793. FUV
spectra probing plasma at transition region temperatures show evidence of
oppositely directed flows with components reaching Doppler velocities of +/-
100 km/s. Raster Doppler maps using a Si IV transition region line show all
four jets to have helical motion of the same sense. Simultaneous observations
of the region by SDO and Hinode show that the jets emanate from a source region
comprising a pore embedded in the interior of a supergranule. The parasitic
pore has opposite polarity flux compared to the surrounding network field. This
leads to a spine-fan magnetic topology in the coronal field that is amenable to
jet formation. Time-dependent data-driven simulations are used to investigate
the underlying drivers for the jets. These numerical experiments show that the
emergence of current-carrying magnetic field in the vicinity of the pore
supplies the magnetic twist needed for recurrent helical jet formation.Comment: 15 pages, 10 figures, accepted by Ap
Magnetohydrodynamics of the Weakly Ionized Solar Photosphere
We investigate the importance of ambipolar diffusion and Hall currents for
high-resolution comprehensive ('realistic') photospheric simulations. To do so
we extended the radiative magnetohydrodynamics code \emph{MURaM} to use the
generalized Ohm's law under the assumption of local thermodynamic equilibrium.
We present test cases comparing analytical solutions with numerical simulations
for validation of the code. Furthermore, we carried out a number of numerical
experiments to investigate the impact of these neutral-ion effects in the
photosphere. We find that, at the spatial resolutions currently used (5-20 km
per grid point), the Hall currents and ambipolar diffusion begin to become
significant -- with flows of 100 m/s in sunspot light bridges, and changes of a
few percent in the thermodynamic structure of quiet-Sun magnetic features. The
magnitude of the effects is expected to increase rapidly as smaller-scale
variations are resolved by the simulations.Comment: accepted Ap
An Interface Region Imaging Spectrograph first view on Solar Spicules
Solar spicules have eluded modelers and observers for decades. Since the
discovery of the more energetic type II, spicules have become a heated topic
but their contribution to the energy balance of the low solar atmosphere
remains unknown. Here we give a first glimpse of what quiet Sun spicules look
like when observed with NASA's recently launched Interface Region Imaging
Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the
chromosphere and transition region we compare the properties and evolution of
spicules as observed in a coordinated campaign with Hinode and the Atmospheric
Imaging Assembly. Our IRIS observations allow us to follow the thermal
evolution of type II spicules and finally confirm that the fading of Ca II H
spicules appears to be caused by rapid heating to higher temperatures. The IRIS
spicules do not fade but continue evolving, reaching higher and falling back
down after 500-800 s. Ca II H type II spicules are thus the initial stages of
violent and hotter events that mostly remain invisible in Ca II H filtergrams.
These events have very different properties from type I spicules, which show
lower velocities and no fading from chromospheric passbands. The IRIS spectra
of spicules show the same signature as their proposed disk counterparts,
reinforcing earlier work. Spectroheliograms from spectral rasters also confirm
that quiet Sun spicules originate in bushes from the magnetic network. Our
results suggest that type II spicules are indeed the site of vigorous heating
(to at least transition region temperatures) along extensive parts of the
upward moving spicular plasma.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters. For
associated movies, see http://folk.uio.no/tiago/iris_spic
Detection of supersonic downflows and associated heating events in the transition region above sunspots
IRIS data allow us to study the solar transition region (TR) with an
unprecedented spatial resolution of 0.33 arcsec. On 2013 August 30, we observed
bursts of high Doppler shifts suggesting strong supersonic downflows of up to
200 km/s and weaker, slightly slower upflows in the spectral lines Mg II h and
k, C II 1336 \AA, Si IV 1394 \AA, and 1403 \AA, that are correlated with
brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout
the 2 hr observation, with average burst durations of about 20 s. The locations
of these short-lived events appear to be the umbral and penumbral footpoints of
EUV loops. Fast apparent downflows are observed along these loops in the SJIs
and in AIA, suggesting that the loops are thermally unstable. We interpret the
observations as cool material falling from coronal heights, and especially
coronal rain produced along the thermally unstable loops, which leads to an
increase of intensity at the loop footpoints, probably indicating an increase
of density and temperature in the TR. The rain speeds are on the higher end of
previously reported speeds for this phenomenon, and possibly higher than the
free-fall velocity along the loops. On other observing days, similar bright
dots are sometimes aligned into ribbons, resembling small flare ribbons. These
observations provide a first insight into small-scale heating events in
sunspots in the TR.Comment: accepted by ApJ
- …