2,001 research outputs found

    A Coupled-Channels Study of 11Be^{11}Be Coulomb Excitation

    Get PDF
    We study the effects of channel coupling in the excitation of 11Be^{11}Be projectiles incident on heavy targets. The contribution to the excitation from the Coulomb and the nuclear fields in peripheral collisions are considered. Our results are compared with recent data on the excitation of the \halfm state in 11Be^{11}Be projectiles. We show that the experimental results cannot be explained, unless very unusual parameters are used.Comment: 8 pages, 2 Postscript figures available upon request, corrected misprints in eqs. 2 and

    Stream differential equations: Specification formats and solution methods

    Get PDF
    Streams, or infinite sequences, are infinite objects of a very simple type, yet they have a rich theory partly due to their ubiquity in mathematics and computer science. Stream differential equations are a coinductive method for specifying streams and stream operations, and their theory has been developed in many papers over the past two decades. In this paper we present a survey of the many results in this area. Our focus is on the classification of different formats of stream differential equations, their solution methods, and the classes of streams they can define. Moreover, we describe in detail the connection between the so-called syntactic solution method and abstract GSOS

    Stream Differential Equations: Specification Formats and Solution Methods

    Get PDF
    Streams, or innite sequences, are innite objects of a very simple type, yet they have a rich theory partly due to their ubiquity in mathematics and computer science. Stream dierential equations are a coinductive method for specifying streams and stream operations, and their theory has been developed in many papers over the past two decades. In this paper we present a survey of the many results in this area. Our focus is on the classication of dierent formats of stream dierential equations, their solution methods, and the classes of streams they can dene. Moreover, we describe in detail the connection between the so-called syntactic solution method and abstract GSOS

    Theory of Multiphonon Excitation in Heavy-Ion Collisions

    Full text link
    We study the effects of channel coupling in the excitation dynamics of giant resonances in relativistic heavy ions collisions. For this purpose, we use a semiclassical approximation to the Coupled-Channels problem and separate the Coulomb and the nuclear parts of the coupling into their main multipole components. In order to assess the importance of multi-step processes, we neglect the resonance widths and solve the set of coupled equations exactly. Finite widths are then considered. In this case, we handle the coupling of the ground state with the dominant Giant Dipole Resonance exactly and study the excitation of the remaining resonances within the Coupled-Channels Born Approximation. A comparison with recent experimental data is made.Comment: 29 pages, 7 Postscript figures available upon reques

    Computing Quantiles in Markov Reward Models

    Get PDF
    Probabilistic model checking mainly concentrates on techniques for reasoning about the probabilities of certain path properties or expected values of certain random variables. For the quantitative system analysis, however, there is also another type of interesting performance measure, namely quantiles. A typical quantile query takes as input a lower probability bound p and a reachability property. The task is then to compute the minimal reward bound r such that with probability at least p the target set will be reached before the accumulated reward exceeds r. Quantiles are well-known from mathematical statistics, but to the best of our knowledge they have not been addressed by the model checking community so far. In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with non-negative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in time polynomial in the size of the chain and the maximum reward.Comment: 17 pages, 1 figure; typo in example correcte

    A final coalgebra for k-regular sequences

    Get PDF

    Short-range correlations in two-nucleon knockout reactions

    Full text link
    A theory of short-range correlations in two-nucleon removal due to elastic breakup (diffraction dissociation) on a light target is developed. Fingerprints of these correlations will appear in momentum distributions of back-to-back emission of the nucleon pair. Expressions for the momentum distributions are derived and calculations for reactions involving stable and unstable nuclear species are performed. The signature of short-range correlations in other reaction processes is also studied.Comment: Nuclear Physics A, in pres

    Dynamical description of the breakup of one-neutron halo nuclei 11Be and 19C

    Full text link
    We investigate the breakup of the one-neutron halo nuclei 11Be and 19C within a dynamical model of the continuum excitation of the projectile. The time evolution of the projectile in coordinate space is described by solving the three-dimensional time dependent Schroedinger equation, treating the projectile-target (both Coulomb and nuclear) interaction as a time dependent external perturbation. The pure Coulomb breakup dominates the relative energy spectra of the fragments in the peak region, while the nuclear breakup is important at higher relative energies. The coherent sum of the two contributions provides a good overall description of the experimental spectra. Cross sections of the first order perturbation theory are derived as a limit of our dynamical model. The dynamical effects are found to be of the order of 10-15% for the beam energies in the range of 60 - 80 MeV/nucleon. A comparison of our results with those of a post form distorted wave Born approximation shows that the magnitudes of the higher order effects are dependent on the theoretical model.Comment: 15 pages, ReVTeX, 5 figures, typos corrected, accepted for publication in Physical Review

    Nuclear Astrophysics in Rare Isotope Facilities

    Full text link
    Nuclear reactions in stars are difficult to measure directly in the laboratory at the small astrophysical energies. In recent years indirect methods with rare isotopes have been developed and applied to extract low-energy astrophysical cross sections.Comment: Invited talk (parallel section) at the Int. Conf. Nucleus-Nucleus Collisions (NN2009), Beijing, China, August 16-21, 2009. To appear in Nucl. Phys.

    Momentum Distributions of Particles from Three--Body Halo Fragmentation: Final State Interactions

    Get PDF
    Momentum distributions of particles from nuclear break-up of fast three-body halos are calculated consistently, and applied to 11^{11}Li. The same two-body interactions between the three particles are used to calculate the ground state structure and the final state of the reaction processes. We reproduce the available momentum distributions from 11^{11}Li fragmentation, together with the size and energy of 11^{11}Li, with a neutron-core relative state containing a pp-state admixture of 20\%-30\%. The available fragmentation data strongly suggest an ss-state in 10^{10}Li at about 50 keV, and indicate a pp-state around 500 keV.Comment: 11 pages (RevTeX), 3 Postscript figures (uuencoded postscript file attached at the end of the LaTeX file). To be published in Phys. Rev.
    • …
    corecore