Computing Quantiles in Markov Reward Models

Michael Ummels

German Aerospace Center

michael.ummels@dlr.de

(Joint Work with Christel Baier, TU Dresden)

FOSSACS 2013

Michael Ummels - Computing Quantiles in Markov Reward Models

Accumulated reward: 0

Accumulated reward: 0 + 1

Accumulated reward: 0 + 1 + 1

Accumulated reward: 0 + 1 + 1 + 0

Accumulated reward: 0 + 1 + 1 + 0 + 1

Accumulated reward: 0 + 1 + 1 + 0 + 1 + 1

Accumulated reward: 0 + 1 + 1 + 0 + 1 + 1 + 0

Accumulated reward: 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1

Accumulated reward: 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 2

Accumulated reward: 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 2 = 7

Accumulated reward: 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 2 = 7

Note: Scheduler resolves nondeterminism.

Example properties in PRCTL (Andova et al.):

Example properties in PRCTL (Andova et al.):

► $s_0 \models P_{>0.2}(a \cup U_{\le 3} b)$

Example properties in PRCTL (Andova et al.):

- ► $s_0 \models P_{>0.2}(a \cup U_{\le 3} b)$
- ► $s_0 \models P_{=0}(a \cup U_{\leq 1} b)$

Example properties in PRCTL (Andova et al.):

- ► $s_0 \models P_{>0.2}(a \cup U_{\le 3} b)$ ► $s_0 \not\models P_{\le 0.2}(a \cup U_{\le 2} b)$
- ► $s_0 \models P_{=0}(a \cup U_{\leq 1} b)$

c)

Example properties in PRCTL (Andova et al.):

► $s_0 \models P_{>0.2}(a \cup U_{\le 3} b)$ ► $s_0 \not\models P_{\le 0.2}(a \cup U_{\le 2} b)$

$$s_0 \models P_{=0}(a \cup U_{\leq 1} b)$$
 $\triangleright s_0 \not\models P_{>0}(a \cup U_{\leq 2} b)$

Example properties in PRCTL (Andova et al.):

- ► $s_0 \models \forall P_{>0.2}(a \cup U_{\leq 3} b)$ ► $s_0 \models \exists P_{>0.2}(a \cup U_{\leq 2} b)$
- ► $s_0 \models \forall \mathsf{P}_{=0}(a \, \mathsf{U}_{\leq 1} \, b)$ ► $s_0 \models \exists \mathsf{P}_{=0}(a \, \mathsf{U}_{\leq 2} \, b)$

Motivation

Example: Randomised Mutual exclusion.

Motivation

Example: Randomised Mutual exclusion.

Question: How many steps may process 1 wait until with 90% chance in critical section?

Motivation

Example: Randomised Mutual exclusion.

Question: How many steps may process 1 wait until with 90% chance in critical section?

```
Compute: least r such that wn \models \forall P_{\geq 0.9}(true U_{\leq r} c_1).
```

More Motivation

Example: Resource Consumption.

More Motivation

Example: Resource Consumption.

Question: How much to invest to successfully produce with 99%?

More Motivation

Example: Resource Consumption.

Question: How much to invest to successfully produce with 99%?

Compute: least *r* such that $s \models \exists P_{\geq 0.99}$ (*true* $U_{\leq r}$ product).

Quantile Query $\varphi = \forall P_{\bowtie p}(a \cup I_{\le?} b)$ or $\varphi = \exists P_{\bowtie p}(a \cup I_{\le?} b)$ where

- ▶ $a, b \in AP$,
- ▶ $p \in [0, 1]$, and
- $\blacktriangleright \ \bowtie \in \{<,\leq,\geq,>\}.$

Quantile Query $\varphi = \forall P_{\bowtie p}(a \cup U_{\leq ?} b)$ or $\varphi = \exists P_{\bowtie p}(a \cup U_{\leq ?} b)$ where

- ▶ $a, b \in AP$,
- ▶ $p \in [0, 1]$, and
- $\blacktriangleright \ \bowtie \in \big\{<,\leq,\geq,>\big\}.$

Write $\varphi[r]$ for the PRCTL formula that results from replacing ? by *r*.

Quantile Query $\varphi = \forall P_{\bowtie p}(a \cup I_{\le?} b)$ or $\varphi = \exists P_{\bowtie p}(a \cup I_{\le?} b)$ where

- ▶ $a, b \in AP$,
- ▶ $p \in [0, 1]$, and
- $\blacktriangleright \ \bowtie \in \{<,\leq,\geq,>\}.$

Write $\varphi[r]$ for the PRCTL formula that results from replacing ? by *r*.

Define the value of *s* wrt. φ to be the least/largest *r* such that $s \models \varphi[r]$:

Quantile Query $\varphi = \forall P_{\bowtie p}(a \cup I_{\le?} b)$ or $\varphi = \exists P_{\bowtie p}(a \cup I_{\le?} b)$ where

- ▶ $a, b \in AP$,
- ▶ $p \in [0, 1]$, and
- $\blacktriangleright \ \bowtie \in \big\{ <, \leq, \geq, > \big\}.$

Write $\varphi[r]$ for the PRCTL formula that results from replacing ? by *r*.

Define the value of *s* wrt. φ to be the least/largest *r* such that $s \models \varphi[r]$:

►
$$val_{\varphi}(s) = inf\{r \in \mathbb{R} : s \models \varphi[r]\}$$
 if $\bowtie \in \{\ge, >\}$ (minimising query).

Quantile Query $\varphi = \forall P_{\bowtie p}(a \cup I_{\le ?} b)$ or $\varphi = \exists P_{\bowtie p}(a \cup I_{\le ?} b)$ where

- ▶ $a, b \in AP$,
- ▶ $p \in [0, 1]$, and
- $\blacktriangleright \ \bowtie \in \big\{ <, \leq, \geq, > \big\}.$

Write $\varphi[r]$ for the PRCTL formula that results from replacing ? by r.

Define the value of *s* wrt. φ to be the least/largest *r* such that $s \models \varphi[r]$:

►
$$val_{\varphi}(s) = inf\{r \in \mathbb{R} : s \models \varphi[r]\}$$
 if $\bowtie \in \{\ge, >\}$ (minimising query).

► $val_{\varphi}(s) = sup\{r \in \mathbb{R} : s \models \varphi[r]\}$ if $\bowtie \in \{<, \le\}$ (maximising query).

Quantile Query $\varphi = \forall P_{\bowtie p}(a \cup I_{\le ?} b)$ or $\varphi = \exists P_{\bowtie p}(a \cup I_{\le ?} b)$ where

- ▶ $a, b \in AP$,
- ▶ $p \in [0, 1]$, and
- $\blacktriangleright \ \bowtie \in \big\{ <, \leq, \geq, > \big\}.$

Write $\varphi[r]$ for the PRCTL formula that results from replacing ? by *r*.

Define the value of *s* wrt. φ to be the least/largest *r* such that $s \models \varphi[r]$:

►
$$val_{\varphi}(s) = inf\{r \in \mathbb{R} : s \models \varphi[r]\}$$
 if $\bowtie \in \{\ge, >\}$ (minimising query).

►
$$val_{\varphi}(s) = sup\{r \in \mathbb{R} : s \models \varphi[r]\}$$
 if $\bowtie \in \{<, \le\}$ (maximising query).

Note: 1. $val_{\varphi}(s) = -\infty$ or $val_{\varphi}(s) \ge 0$.

2. $s \models \varphi[val_{\varphi}(s)]$ for minimising queries with finite value.

Properties of the value

Two reasons for $val_{\varphi}(s) = \infty$:

$$s \not\models \forall \mathsf{P}_{\geq 1}(a \cup _{\leq \infty} b) \implies \mathsf{val}_{\varphi}(s) = \infty.$$

Properties of the value

Two reasons for $val_{\varphi}(s) = \infty$:

$$s \not\models \forall \mathsf{P}_{\geq 1}(a \cup _{\leq \infty} b) \implies \mathsf{val}_{\varphi}(s) = \infty.$$

$$s \notin \forall \mathsf{P}_{\geq 1}(a \cup s r b) \text{ for all } r \in \mathbb{R} \implies \mathsf{val}_{\varphi}(s) = \infty.$$

Properties of the value

Two reasons for $val_{\varphi}(s) = \infty$:

Use classical PCTL model-checking algorithm to decide which is the case.

Question: Do we really need all eight query types?
Question: Do we really need all eight query types?

Define the dual of a query $\varphi = \forall P_{\bowtie p}(a \cup U_{\leq ?} b)$ to be the query $\overline{\varphi} = \exists P_{\overrightarrow{\bowtie}p}(a \cup U_{\leq ?} b)$, where e.g. $\overline{\leq} = \geq$, and vice versa.

Question: Do we really need all eight query types?

Define the dual of a query $\varphi = \forall \mathsf{P}_{\bowtie p}(a \cup \mathsf{U}_{\le?} b)$ to be the query $\overline{\varphi} = \exists \mathsf{P}_{\overline{\bowtie}p}(a \cup \mathsf{U}_{\le?} b)$, where e.g. $\overline{<} = \ge$, and vice versa.

Note: $\overline{\varphi}[r] \equiv \neg \varphi[r]$ for all $r \in \mathbb{R} \cup \{\pm \infty\}$.

Question: Do we really need all eight query types?

Define the dual of a query $\varphi = \forall \mathsf{P}_{\bowtie p}(a \cup \mathsf{U}_{\le?} b)$ to be the query $\overline{\varphi} = \exists \mathsf{P}_{\overline{\bowtie}p}(a \cup \mathsf{U}_{\le?} b)$, where e.g. $\overline{<} = \ge$, and vice versa.

Note: $\overline{\varphi}[r] \equiv \neg \varphi[r]$ for all $r \in \mathbb{R} \cup \{\pm \infty\}$.

Proposition

Let \mathcal{M} be an MDP and φ a quantile query. Then $\operatorname{val}_{\varphi}(s) = \operatorname{val}_{\overline{\varphi}}(s)$ for all states s of \mathcal{M} .

Question: Do we really need all eight query types?

Define the dual of a query $\varphi = \forall \mathsf{P}_{\bowtie p}(a \cup \mathsf{U}_{\le?} b)$ to be the query $\overline{\varphi} = \exists \mathsf{P}_{\overline{\bowtie}p}(a \cup \mathsf{U}_{\le?} b)$, where e.g. $\overline{<} = \ge$, and vice versa.

Note: $\overline{\varphi}[r] \equiv \neg \varphi[r]$ for all $r \in \mathbb{R} \cup \{\pm \infty\}$.

Proposition

Let \mathcal{M} be an MDP and φ a quantile query. Then $\operatorname{val}_{\varphi}(s) = \operatorname{val}_{\overline{\varphi}}(s)$ for all states s of \mathcal{M} .

Proof:

Question: Do we really need all eight query types?

Define the dual of a query $\varphi = \forall \mathsf{P}_{\bowtie p}(a \cup \mathsf{U}_{\le?} b)$ to be the query $\overline{\varphi} = \exists \mathsf{P}_{\overline{\bowtie}p}(a \cup \mathsf{U}_{\le?} b)$, where e.g. $\overline{<} = \ge$, and vice versa.

Note: $\overline{\varphi}[r] \equiv \neg \varphi[r]$ for all $r \in \mathbb{R} \cup \{\pm \infty\}$.

Proposition

Let \mathcal{M} be an MDP and φ a quantile query. Then $\operatorname{val}_{\varphi}(s) = \operatorname{val}_{\overline{\varphi}}(s)$ for all states s of \mathcal{M} .

Consequence: May restrict to minimising queries.

A quantile query $\forall P_{\bowtie p}(a \cup U_{\leq ?} b)$ or $\exists P_{\bowtie p}(a \cup U_{\leq ?} b)$ is qualitative if $p \in \{0, 1\}$.

A quantile query $\forall P_{\bowtie p}(a \cup U_{\leq ?} b)$ or $\exists P_{\bowtie p}(a \cup U_{\leq ?} b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

A quantile query $\forall P_{\bowtie p}(a \cup U_{\leq ?} b)$ or $\exists P_{\bowtie p}(a \cup U_{\leq ?} b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.

A quantile query $\forall \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ or $\exists \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.

Example: $\varphi = \forall P_{>0}(a \cup U_{\leq ?} b)$

A quantile query $\forall \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ or $\exists \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.

Example: $\varphi = \forall P_{>0}(a \cup U_{\leq ?} b)$

$$R = \{r < r_1 < r_2 < ...\}$$
$$X = \{discovered states\}$$

A quantile query $\forall \mathsf{P}_{\bowtie p}(a \mathsf{U}_{\leq}, b)$ or $\exists \mathsf{P}_{\bowtie p}(a \mathsf{U}_{\leq}, b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.

Example: $\varphi = \forall P_{>0}(a \cup U_{\leq ?} b)$

$$R = \{r < r_1 < r_2 < ...\}$$

$$X = \{\text{discovered states}\}$$

$$Y = \{s \in X : rew(s) > 0, val_{\varphi}(s) \le r\}$$

A quantile query $\forall \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ or $\exists \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.

Example: $\varphi = \forall \mathsf{P}_{>0}(a \, \mathsf{U}_{\leq ?} \, b)$

A quantile query $\forall \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ or $\exists \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.

Example: $\varphi = \forall \mathsf{P}_{>0}(a \, \mathsf{U}_{\leq ?} \, b)$

A quantile query $\forall \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ or $\exists \mathsf{P}_{\bowtie p}(a \cup \mathbb{Q}_{\leq}, b)$ is qualitative if $p \in \{0, 1\}$.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.

Example: $\varphi = \forall \mathsf{P}_{>0}(a \, \mathsf{U}_{\leq ?} \, b)$

Existential queries

Now let $\varphi = \exists P_{>p}(a \cup U_{\leq ?} b)$ with $p \in (0, 1)$.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 2: The probabilities $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup \bigcup_{\leq r} b)$ converge to $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 2: The probabilities $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup \bigcup_{\leq r} b)$ converge to $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$.

Algorithm for computing $val_{\varphi}(s)$:

- ► If $p \ge \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$, then return ∞ .
- ► Otherwise compute $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b)$ for i = 0, 1, 2, 3, ... until probability exceeds p; return i.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 2: The probabilities $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup \bigcup_{\leq r} b)$ converge to $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$.

Algorithm for computing $val_{\varphi}(s)$:

- ► If $p \ge \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$, then return ∞.
- ► Otherwise compute $\max_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b)$ for i = 0, 1, 2, 3, ... until probability exceeds p; return i.

How big can the value get???

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \exists P_{>p}(a \cup U_{\leq ?} b)$, and $p < q = \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \exists P_{>p}(a \cup U_{\leq ?} b)$, and $p < q = \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

Theorem

Queries of the form $\exists P_{>p}(a \cup U_{\leq ?} b)$ can be evaluated in exponential time.

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \exists P_{>p}(a \cup U_{\leq ?} b)$, and $p < q = \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

Theorem

Queries of the form $\exists P_{>p}(a \cup v_{\leq}, b)$ can be evaluated in exponential time. Question: What about $\exists P_{>p}(a \cup v_{\leq}, b)$?

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \exists P_{>p}(a \cup U_{\leq ?} b)$, and $p < q = \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

Theorem

Queries of the form $\exists P_{>p}(a \cup Q_{\leq ?} b)$ can be evaluated in exponential time. Question: What about $\exists P_{\geq p}(a \cup Q_{\leq ?} b)$?

Lemma still applies but p = q does not entail $val_{\varphi}(s) = \infty!$

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \exists P_{>p}(a \cup U_{\leq ?} b)$, and $p < q = \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

Theorem

Queries of the form $\exists P_{p}(a \cup U_{\leq ?} b)$ can be evaluated in exponential time.

Question: What about $\exists P_{\geq p}(a \cup U_{\leq ?} b)$?

Lemma still applies but p = q does not entail $val_{\varphi}(s) = \infty!$

Lemma

Let \mathcal{M} be an MDP with n states, $\varphi = \exists P_{\geq p}(a \cup U_{\leq ?} b)$, and $p = \max_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) = \infty$ or $\operatorname{val}_{\varphi}(s) \leq n \cdot \max$ reward.

For queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ we can get the same result.

For queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ we can get the same result.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

For queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ we can get the same result.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 2: The probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup u_{\leq r} b)$ converge to $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$.

For queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ we can get the same result.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 2: The probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup u_{\leq r} b)$ converge to $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$.

Lemma

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \forall P_{>p}(a \cup Q_{\leq ?} b)$, and $p < q = \min_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

For queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ we can get the same result.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 2: The probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup U_{\leq r} b)$ converge to $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$.

Lemma

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \forall P_{>p}(a \cup v_{\leq ?} b)$, and $p < q = \min_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

Theorem

Queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ can be evaluated in exponential time.

For queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ we can get the same result.

Fact 1: For each $r \in \mathbb{N}$ the probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup_{\leq i} b), 0 \leq i \leq r$ can be computed in time $poly(r \cdot |\mathcal{M}|)$.

Fact 2: The probabilities $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup U_{\leq r} b)$ converge to $\min_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$.

Lemma

Let \mathcal{M} be an MDP with n states where the denominator of each transition probability is at most m, $\varphi = \forall P_{>p}(a \cup Q_{\leq ?} b)$, and $p < q = \min_{\sigma} \Pr_{s}^{\sigma}(a \cup b)$. Then $\operatorname{val}_{\varphi}(s) \leq -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^{n}$.

Theorem

Queries of the form $\forall P_{>p}(a \cup U_{\leq ?} b)$ can be evaluated in exponential time.

Open: Algorithm for evaluating $\forall P_{\geq p}(a \cup U_{\leq ?} b)$.

Question: Assume $\varphi = \forall P_{\geq p}(a \cup U_{\leq ?} b)$, where $p = \min_{\sigma} Pr_s^{\sigma}(a \cup b)$, and $val_{\varphi}(s) < \infty$. Then $val_{\varphi}(s) \leq |S| \cdot max reward ?$

A Counter-Example

Question: Assume $\varphi = \forall P_{\geq p}(a \cup U_{\leq ?} b)$, where $p = \min_{\sigma} Pr_s^{\sigma}(a \cup b)$, and $val_{\varphi}(s) < \infty$. Then $val_{\varphi}(s) \leq |S| \cdot max reward ?$

A Counter-Example

Question: Assume $\varphi = \forall P_{\geq p}(a \cup U_{\leq ?} b)$, where $p = \min_{\sigma} Pr_s^{\sigma}(a \cup b)$, and $val_{\varphi}(s) < \infty$. Then $val_{\varphi}(s) \leq |S| \cdot max reward ?$

Note: $\operatorname{val}_{\varphi}(s) = -\lfloor 1/\log_2 q \rfloor$.

Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:

Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:

Fact: For a Markov chain with rewards 0 and 1, the probabilities $Pr_s(a \cup l \leq r, b)$ can be computed in time $poly(|\mathcal{M}|) \cdot \log r$.

Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:

Fact: For a Markov chain with rewards 0 and 1, the probabilities $Pr_s(a \cup l \leq r, b)$ can be computed in time $poly(|\mathcal{M}|) \cdot \log r$.

Hence: Binary search in the interval $[0, -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^n]$ with $q = \Pr_s(a \cup b)$ can be used to determine $\operatorname{val}_{\varphi}(s)$ for $\varphi = \Pr_{>p}(a \cup q)$.
Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:

Fact: For a Markov chain with rewards 0 and 1, the probabilities $Pr_s(a \cup l \leq r, b)$ can be computed in time $poly(|\mathcal{M}|) \cdot \log r$.

Hence: Binary search in the interval $[0, -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^n]$ with $q = \Pr_s(a \cup b)$ can be used to determine $\operatorname{val}_{\varphi}(s)$ for $\varphi = \Pr_{>p}(a \cup d_{\leq 2})$.

Note: $-\lfloor \ln(q-p) \rfloor \leq \operatorname{poly}(|\mathcal{M}|) + ||p||.$

Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:

Fact: For a Markov chain with rewards 0 and 1, the probabilities $Pr_s(a \cup \leq r b)$ can be computed in time $poly(|\mathcal{M}|) \cdot \log r$.

Hence: Binary search in the interval $[0, -\lfloor \ln(q-p) \rfloor \cdot n \cdot \max \operatorname{reward} \cdot m^n]$ with $q = \Pr_s(a \cup b)$ can be used to determine $\operatorname{val}_{\varphi}(s)$ for $\varphi = \Pr_{>p}(a \cup l_{\leq ?} b)$.

Note:
$$-\lfloor \ln(q-p) \rfloor \le \operatorname{poly}(|\mathcal{M}|) + ||p||.$$

Theorem

Quantile Queries can be evaluated in pseudo-polynomial time on Markov chains.

Results:

- Polynomial algorithm for qualitative queries.
- Exponential algorithm for quantitative queries.
- Pseudo-polynomial algorithm for Markov Chains.

Results:

- Polynomial algorithm for qualitative queries.
- Exponential algorithm for quantitative queries.
- Pseudo-polynomial algorithm for Markov Chains.

Future work:

- Queries of the form $Q(a U_{>r} b)$.
- Long-run average rewards.
- PRCTL with parameters.