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Markov RewardModels

Model: Markov decision processes with nonnegative rewards on states.
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Accumulated reward: 0

+ 1 + 1 + 0 + 1 + 1 + 0 + 1 + 2 = 7

Note: Scheduler resolves nondeterminism.
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Markov RewardModels

Model: Markov decision processes with nonnegative rewards on states.
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PRCTL
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Example properties in PRCTL (Andova et al.):

▶ s0 ⊧ P>0.2(a U≤3 b)

▶ s0 ⊧ P=0(a U≤1 b)

▶ s0 ⊧̸ P≤0.2(a U≤2 b)

▶ s0 ⊧̸ P>0(a U≤2 c)
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Motivation

Example: Randomised Mutual exclusion.
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Question: How many steps may process 1 wait until with 90% chance in
critical section?

Compute: least r such that wn ⊧ ∀P≥0.9(trueU≤r c1).
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More Motivation

Example: Resource Consumption.
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failure

Question: How much to invest to successfully produce with 99%?

Compute: least r such that s ⊧ ∃P≥0.99(trueU≤r product).

Michael Ummels – Computing Quantiles inMarkov Reward Models 5 / 15



More Motivation

Example: Resource Consumption.

s

1,000,000

1,000

1

⋯

⋯

product

failure

Question: How much to invest to successfully produce with 99%?

Compute: least r such that s ⊧ ∃P≥0.99(trueU≤r product).

Michael Ummels – Computing Quantiles inMarkov Reward Models 5 / 15



More Motivation

Example: Resource Consumption.

s

1,000,000

1,000

1

⋯

⋯

product

failure

Question: How much to invest to successfully produce with 99%?

Compute: least r such that s ⊧ ∃P≥0.99(trueU≤r product).
Michael Ummels – Computing Quantiles inMarkov Reward Models 5 / 15



Quantile Queries

Quantile Query φ = ∀P⋈p(a U≤? b) or φ = ∃P⋈p(a U≤? b) where

▶ a, b ∈ AP,

▶ p ∈ [0, 1], and

▶ ⋈ ∈ {<,≤,≥,>}.

Write φ[r] for the PRCTL formula that results from replacing ? by r.

Define the value of s wrt. φ to be the least/largest r such that s ⊧ φ[r]:

▶ valφ(s) = inf{r ∈ n ∶ s ⊧ φ[r]} if ⋈ ∈ {≥,>} (minimising query).

▶ valφ(s) = sup{r ∈ n ∶ s ⊧ φ[r]} if ⋈ ∈ {<,≤} (maximising query).

Note: 1. valφ(s) = −∞ or valφ(s) ≥ 0.

Note:

2. s ⊧ φ[valφ(s)] for minimising queries with finite value.
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Properties of the value

Two reasons for valφ(s) =∞:

s

1

a a

s ⊧̸ ∀P≥1(a U≤∞ b) ⇒ valφ(s) =∞.

s

1

a b

s ⊧̸ ∀P≥1(a U≤r b) for all r ∈ n ⇒ valφ(s) =∞.

Use classical PCTLmodel-checking algorithm to decide which is the case.
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The DualQuery

Question: Do we really need all eight query types?

Define the dual of a query φ = ∀P⋈p(a U≤? b) to be the query
φ = ∃P⋈p(a U≤? b), where e.g. < = ≥, and vice versa.

Note: φ[r] ≡ ¬φ[r] for all r ∈ n ∪ {±∞}.

Proposition

Let M be anMDP and φ a quantile query. Then valφ(s) = valφ(s) for all
states s ofM.

Proof:

0

s ⊧ φ[r]s ⊧ φ[r]

−∞ +∞

Consequence: May restrict to minimising queries.
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Qualitative Queries

A quantile query ∀P⋈p(a U≤? b) or ∃P⋈p(a U≤? b) is qualitative if p ∈ {0, 1}.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zenoMDPs.

Example: φ = ∀P>0(a U≤? b)

M R = {0}
X = {s ∶ rew(s) > 0, s ⊧ b}

Y = {s ∈ X ∶ rew(s) > 0, valφ(s) ≤ r}
Z = {s ∶ s ⊧ a ∧ ¬b, rew(s) = 0}
X ← {s ⊧ a ∧∀P>0X(Z U Y)}
R ← R \ {r}
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Existential queries

Now let φ = ∃P>p(a U≤? b) with p ∈ (0, 1).

Fact 1: For each r ∈ R the probabilities maxσ Pr
σ
s (a U≤i b), 0 ≤ i ≤ r can be

computed in time poly(r ⋅ ∣M∣).

Fact 2: The probabilities maxσ Pr
σ
s (a U≤r b) converge to maxσ Pr

σ
s (a U b).

Algorithm for computing valφ(s):

▶ If p ≥maxσ Pr
σ
s (a U b), then return∞.

▶ Otherwise computemaxσ Pr
σ
s (a U≤i b) for i = 0, 1, 2, 3, . . . until

probability exceeds p; return i.

How big can the value get???
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Bounding the Value

Lemma

Let M be anMDP with n states where the denominator of each transition
probability is at most m, φ = ∃P>p(a U≤? b), and p < q =maxσ Pr

σ
s (a U b).

Then valφ(s) ≤ −⌊ln(q − p)⌋ ⋅ n ⋅max reward ⋅ mn.

Theorem

Queries of the form ∃P>p(a U≤? b) can be evaluated in exponential time.

Question: What about ∃P≥p(a U≤? b)?

Lemma still applies but p = q does not entail valφ(s) =∞!

Lemma

Let M be anMDP with n states, φ = ∃P≥p(a U≤? b), and
p =maxσ Pr

σ
s (a U b). Then valφ(s) =∞ or valφ(s) ≤ n ⋅max reward.
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UniversalQueries

For queries of the form ∀P>p(a U≤? b) we can get the same result.

Fact 1: For each r ∈ R the probabilities minσ Pr
σ
s (a U≤i b), 0 ≤ i ≤ r can be

computed in time poly(r ⋅ ∣M∣).

Fact 2: The probabilities minσ Pr
σ
s (a U≤r b) converge to minσ Pr

σ
s (a U b).

Lemma

Let M be anMDP with n states where the denominator of each transition
probability is at most m, φ = ∀P>p(a U≤? b), and p < q =minσ Pr

σ
s (a U b).

Then valφ(s) ≤ −⌊ln(q − p)⌋ ⋅ n ⋅max reward ⋅ mn.

Theorem

Queries of the form ∀P>p(a U≤? b) can be evaluated in exponential time.

Open: Algorithm for evaluating ∀P≥p(a U≤? b).
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A Counter-Example

Question: Assume φ = ∀P≥p(a U≤? b), where p =minσ Pr
σ
s (a U b),

and valφ(s) <∞. Then valφ(s) ≤ ∣S∣ ⋅max reward ?

Answer: No! Let p =
1
2 and 0 < q < 1.

s

0

a

0

a0

0

b

1

a

0

b
1
2

1
2

q

1 − q

Note: valφ(s) = −⌊1/ log2 q⌋.
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Markov Chains

Reduce MCs with non-negative rewards toMCs with rewards 0 and 1:

M∶

3

M̃∶

1 1 1

∣M̃∣ ≤ ∣M∣ ⋅max reward

Fact: For a Markov chain with rewards 0 and 1, the probabilities
Prs(a U≤r b) can be computed in time poly(∣M∣) ⋅ log r.

Hence: Binary search in the interval [0,−⌊ln(q − p)⌋ ⋅ n ⋅max reward ⋅ mn]
with q = Prs(a U b) can be used to determine valφ(s) for φ = P>p(a U≤? b).

Note: −⌊ln(q − p)⌋ ≤ poly(∣M∣) + ∥p∥.

Theorem

Quantile Queries can be evaluated in pseudo-polynomial time on
Markov chains.
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Conclusion

Results:

▶ Polynomial algorithm for qualitative queries.

▶ Exponential algorithm for quantitative queries.

▶ Pseudo-polynomial algorithm forMarkov Chains.

Future work:

▶ Queries of the form Q(a U>r b).

▶ Long-run average rewards.

▶ PRCTL with parameters.
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