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Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.

O—0—"C——0

EN[®

Michael Ummels - Computing Quantiles in Markov Reward Models



Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.

Sl o6
o /1 0

Michael Ummels - Computing Quantiles in Markov Reward Models



Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.

o , 2 1 ., 0
O——® O—O
0 /1 0

Accumulated reward: O

Michael Ummels - Computing Quantiles in Markov Reward Models
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Model: Markov decision processes with nonnegative rewards on states.
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Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.
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Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.
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Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.
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Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.
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Markov Reward Models

Model: Markov decision processes with nonnegative rewards on states.

Sl o6
o /1 0

Accumulatedreward: 0 +1+1+0+1+1+0+1+2=7

Note: Scheduler resolves nondeterminism.
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Example properties in PRCTL (Andova et al.):
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Example properties in PRCTL (Andova et al.):

» So FPoa(aUgsb)
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Example properties in PRCTL (Andova et al.):

> So EPog2(aUsb)
» So E P=0(G Us] b)
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Example properties in PRCTL (Andova et al.):

> So FPo2(aUgsb) > So # Poo2(aUg b)
> So = P=0(G U51 b)
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Example properties in PRCTL (Andova et al.):

> So EPog2(aUsb) > So ¥ Pga(aUs b)
> So FPo(aUqb) > so # Po(aUs )
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Example properties in PRCTL (Andova et al.):

> o E VPo2(aUssb) > So F3Pga(aUs, b)
> So E VP=0(G US'| b) > So E E|P=0(G UsZ b)
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Motivation

Example: Randomised Mutual exclusion.
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Motivation

Example: Randomised Mutual exclusion.

Question: How many steps may process 1 wait until with 90% chance in
critical section?
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Motivation

Example: Randomised Mutual exclusion.

Question: How many steps may process 1 wait until with 90% chance in
critical section?

Compute: least r such that wn k VP o(true U, 7).
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More Motivation

Example: Resource Consumption.
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More Motivation

Example: Resource Consumption.

1,000,000

product

Q2

ailure

Question: How much to invest to successfully produce with 99%?
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More Motivation

Example: Resource Consumption.

1,000,000

product

Q2

ailure

Question: How much to invest to successfully produce with 99%?

Compute: least r such that s £ 3P g9(true U, product).
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Quantile Queries

Quantile Query @ = YP,p(a U b) or ¢ = 3P, (a Us, b) where
» a,beAP,
» p€[0,1], and

> ME{< 5,2, >}
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Quantile Queries

Quantile Query @ = YP,p(a U b) or ¢ = 3P, (a Us, b) where
» a,b e AP,
» p€[0,1], and
> ME{< 5,2, >}

Write @[ r] for the PRCTL formula that results from replacing ? by r.
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Quantile Queries

Quantile Query ¢ = VPy,(a U b) or ¢ = 3P,,(a U, b) where
> a,b e AP,
» p€[0,1], and
> ME{< 5,2, >}
Write @[ r] for the PRCTL formula that results from replacing ? by r.

Define the value of s wrt. ¢ to be the least/largest r such that s k ¢[r]:
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Quantile Queries

Quantile Query ¢ = VPy,(a U b) or ¢ = 3P,,(a U, b) where

> a,b e AP,

» p€[0,1], and

> ME{< 5,2, >}
Write @[ r] for the PRCTL formula that results from replacing ? by r.
Define the value of s wrt. ¢ to be the least/largest r such that s k ¢[r]:

» valy(s) =inf{re R: sk ¢[r]}if w € {=, >} (minimising query).
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Quantile Queries

Quantile Query ¢ = VPy,(a U b) or ¢ = 3P,,(a U, b) where
» a,beAP,
» p€[0,1],and
» e {< 5,25}
Write @[ r] for the PRCTL formula that results from replacing ? by r.
Define the value of s wrt. ¢ to be the least/largest r such that s k ¢[r]:
> valy(s) =inf{re R: sk ¢[r]}if x € {=, >} (minimising query).

> valy(s) =sup{re R:sk ¢[r]}if x € {<, <} (maximising query).
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Quantile Queries

Quantile Query ¢ = VPy,(a U b) or ¢ = 3P,,(a U, b) where
» a,beAP,
» pe[0,1] and
» e {< 5,25}
Write @[ r] for the PRCTL formula that results from replacing ? by r.
Define the value of s wrt. ¢ to be the least/largest r such that s k ¢[r]:
> valy(s) =inf{re R: sk ¢[r]}if x € {=, >} (minimising query).
> valy(s) =sup{re R:sk ¢[r]}if x € {<, <} (maximising query).

Note: 1. valy(s) = —oo or valy(s) = 0.

2.5 E @[ valy(s)] for minimising queries with finite value.
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Properties of the value

Two reasons for valy(s) = co:

S # VP.1(aUcee b) = valy(s) = 0.
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Properties of the value

Two reasons for valy(s) = co:

S # VP.1(aUcee b) = valy(s) = 0.

sE VP, (aUgb)forallre R = valy(s) = o.
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Properties of the value

Two reasons for valy(s) = co:

S # VP.1(aUcee b) = valy(s) = 0.

sE VP, (aUgb)forallre R = valy(s) = o.

Use classical PCTL model-checking algorithm to decide which is the case.
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The Dual Query

Question: Do we really need all eight query types?
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The Dual Query

Question: Do we really need all eight query types?

Define the dual of a query ¢ = VP, ,(a U, b) to be the query
¢ =3Pxp(a U b), where e.g. < = =, and vice versa.
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The Dual Query

Question: Do we really need all eight query types?

Define the dual of a query ¢ = VP, ,(a U, b) to be the query
¢ =3Pxp(a U b), where e.g. < = =, and vice versa.

Note: @[r] = ~¢[r] forallr € R u {+oco}.
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The Dual Query

Question: Do we really need all eight query types?

Define the dual of a query ¢ = VP, ,(a U, b) to be the query
¢ =3Pxp(a U b), where e.g. < = =, and vice versa.

Note: @[r] = ~¢[r] forallr € R u {+oco}.

ProEosition

Let M be an MDP and ¢ a quantile query. Then val,(s) = valg(s) for all
states s of M.
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The Dual Query

Question: Do we really need all eight query types?

Define the dual of a query ¢ = VP, ,(a U, b) to be the query
¢ =3Pxp(a U b), where e.g. < = =, and vice versa.

Note: @[r] = ~¢[r] forallr € R u {+oco}.

ProEosition

Let M be an MDP and ¢ a quantile query. Then val,(s) = valg(s) for all
states s of M.

Proof: .
sEQ[r] sk o[r]
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The Dual Query

Question: Do we really need all eight query types?

Define the dual of a query ¢ = VP, ,(a U, b) to be the query
¢ =3Pxp(a U b), where e.g. < = =, and vice versa.

Note: @[r] = ~¢[r] forallr € R u {+oco}.

ProEosition

Let M be an MDP and ¢ a quantile query. Then val,(s) = valg(s) for all
states s of M.

Proof: .
sEQ[r] sk o[r]

Consequence: May restrict to minimising queries.
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.

Theorem

Qualitative queries can be evaluated in strongly polynomial time.
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
Theorem
Qualitative queries can be evaluated in strongly polynomial time.

Previous result: in P for non-zeno MDPs.
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
Theorem

Qualitative queries can be evaluated in strongly polynomial time.
Previous result: in P for non-zeno MDPs.

Example: ¢ = VP,o(a Ug, b)

M R = {0}
X ={s:rew(s)>0,sk b}
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
Theorem

Qualitative queries can be evaluated in strongly polynomial time.
Previous result: in P for non-zeno MDPs.
Example: ¢ = VP,o(a Ug, b)

M R={r<r1<r2<...}
X = {discovered states}
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
Theorem

Qualitative queries can be evaluated in strongly polynomial time.
Previous result: in P for non-zeno MDPs.

Example: ¢ = VP,o(a Ug, b)

M R={r<r1<r2<...}
X = {discovered states}

Y ={seX:rew(s) > 0,valy(s) < r}
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
Theorem

Qualitative queries can be evaluated in strongly polynomial time.
Previous result: in P for non-zeno MDPs.

Example: ¢ = VP,o(a Ug, b)

M R={r<n<r<..}

FanVP.oX(ZUY)
X = {discovered states}

Y ={seX:rew(s) > 0,valy(s) < r}

Z={s:sFan-b,rew(s)=0}

valy =1+ rew(s)
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
Theorem

Qualitative queries can be evaluated in strongly polynomial time.
Previous result: in P for non-zeno MDPs.

Example: ¢ = VP,o(a Ug, b)

M R={r<n<r<..}

FanVP.oX(ZUY)
X = {discovered states}

Y ={seX:rew(s) > 0,valy(s) < r}
Z={s:sFan-b,rew(s)=0}
X< {sEanVP,oX(ZUY)}

valy =1+ rew(s)
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Qualitative Queries

A quantile query YP,,(a U, b) or 3P, (a U, b) is qualitative if p € {0,1}.
Theorem

Qualitative queries can be evaluated in strongly polynomial time.
Previous result: in P for non-zeno MDPs.

Example: ¢ = VP,o(a Ug, b)

R={r<n<r<..}

M

FanVP.oX(ZUY)
X = {discovered states}

Y ={seX:rew(s) > 0,valy(s) < r}
Z={s:sFan-b,rew(s)=0}
X< {sEanVP,oX(ZUY)}

R<R\{r}
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valy =1+ rew(s)




Existential queries

Now let ¢ = 3P,,(a U, b) with p € (0,1).
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Existential queries

Now let ¢ = 3P,,(a U, b) with p € (0,1).

Fact 1: For each r € N the probabilities max, Pr?(a Ugib), 0 <i=<rcanbe
computed in time poly(r - |[M]).
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Existential queries

Now let ¢ = 3P,,(a U, b) with p € (0,1).

Fact 1: For each r € N the probabilities max, Pr?(a Ugib), 0 <i=<rcanbe
computed in time poly(r - |[M]).

Fact 2: The probabilities max, Pr{(a U, b) converge to max, Pre(a U b).
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Existential queries

Now let ¢ = 3P,,(a U, b) with p € (0,1).

Fact 1: For each r € N the probabilities max, Pr?(a Ugib), 0 <i=<rcanbe
computed in time poly(r - |[M]).

Fact 2: The probabilities max, Pr{(a U, b) converge to max, Pre(a U b).

Algorithm for computing valy(s):
» If p =2 maxy Pré(a U b), then return oo.

» Otherwise compute max, Pre(a Ug; b) fori=0,1,2,3,... until
probability exceeds p; return i.
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Existential queries

Now let ¢ = 3P,,(a U, b) with p € (0,1).

Fact 1: For each r € N the probabilities max, Pr?(a Ugib), 0 <i=<rcanbe
computed in time poly(r - |M]).

Fact 2: The probabilities max, Pré(a U, b) converge to max, Pr¢(a U b).

Algorithm for computing valy(s):
» If p =2 maxy Pré(a U b), then return oo.

» Otherwise compute max, Pre(a Ug; b) fori=0,1,2,3,... until
probability exceeds p; return i.

How big can the value get???
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Bounding the Value

Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = 3P, ,(a U, b), and p < g = max, Pr¢(a U b).
Then valy(s) < —|[In(g - p)] - n - maxreward - m".
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Bounding the Value

Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = 3P, ,(a U, b), and p < g = max, Pr¢(a U b).
Then valy(s) < —|[In(g - p)] - n - maxreward - m".

Theorem

Queries of the form 3P, ,(a UL, b) can be evaluated in exponential time.
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Bounding the Value

Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = 3P, ,(a U, b), and p < g = max, Pr¢(a U b).
Then valy(s) < —|[In(g - p)] - n - maxreward - m".

Theorem

Queries of the form 3P, ,(a UL, b) can be evaluated in exponential time.

Question: What about 3P,,(a U, b)?

Michael Ummels - Computing Quantiles in Markov Reward Models



Bounding the Value

Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = 3P, ,(a U, b), and p < g = max, Pr¢(a U b).
Then valy(s) < —|[In(g - p)] - n - maxreward - m".

Theorem

Queries of the form 3P, ,(a UL, b) can be evaluated in exponential time.
Question: What about 3P,,(a U, b)?

Lemma still applies but p = g does not entail valy(s) = co!
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Bounding the Value

Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = 3P, ,(a U, b), and p < g = max, Pr¢(a U b).
Then valy(s) < —|[In(g - p)] - n - maxreward - m".

Theorem

Queries of the form 3P, ,(a UL, b) can be evaluated in exponential time.
Question: What about 3P,,(a U, b)?
Lemma still applies but p = g does not entail valy(s) = co!

Lemma

Let M be an MDP with n states, ¢ = 3P,,(a U, b), and
p = max, Pr¢(a Ub). Then valy(s) = oo or valy(s) < n - maxreward.
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Universal Queries

For queries of the form VP, ,(a U, b) we can get the same result.
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Universal Queries

For queries of the form VP, ,(a U, b) we can get the same result.

Fact 1: For each r € N the probabilities ming Pré(a Ug; b), 0 < i < r can be
computed in time poly(r - |[M]).
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Universal Queries

For queries of the form VP, ,(a U, b) we can get the same result.

Fact 1: For each r € N the probabilities ming Pré(a Ug; b), 0 < i < r can be
computed in time poly(r - |[M]).

Fact 2: The probabilities min, Pre(a U, b) converge to ming Pré(a U b).
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Universal Queries

For queries of the form VP, ,(a U, b) we can get the same result.

Fact 1: For each r € N the probabilities ming Pré(a Ug; b), 0 < i < r can be
computed in time poly(r - |[M]).

Fact 2: The probabilities min, Pre(a U, b) converge to ming Pré(a U b).

Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = VP, ,(a U b), and p < g = min, Pre(a U b).
Thenvaly(s) < —[In(q - p) |- n - maxreward - m".
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Universal Queries

For queries of the form VP, ,(a U, b) we can get the same result.

Fact 1: For each r € N the probabilities ming Pré(a Ug; b), 0 < i < r can be
computed in time poly(r - |[M]).

Fact 2: The probabilities min, Pre(a U, b) converge to ming Pré(a U b).
Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = VP, ,(a U b), and p < g = min, Pre(a U b).
Thenvaly(s) < —[In(q - p) |- n - maxreward - m".

Theorem

Queries of the form VP>p(a U b) can be evaluated in exponential time.
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Universal Queries

For queries of the form VP, ,(a U, b) we can get the same result.

Fact 1: For each r € N the probabilities ming Pré(a Ug; b), 0 < i < r can be
computed in time poly(r - |[M]).

Fact 2: The probabilities min, Pre(a U, b) converge to ming Pré(a U b).

Lemma

Let M be an MDP with n states where the denominator of each transition
probability is at most m, ¢ = VP, ,(a U b), and p < g = min, Pre(a U b).
Thenvaly(s) < —[In(q - p) |- n - maxreward - m".

Theorem

Queries of the form VP>p(a U b) can be evaluated in exponential time.

Open: Algorithm for evaluating VP.,(a U, b).
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A Counter-Example

Question: Assume ¢ = YP,,(a U b), where p = ming Pr{(a U b),
and valy(s) < oo. Then valy(s) < |S| - maxreward ?

Michael Ummels - Computing Quantiles in Markov Reward Models



A Counter-Example

Question: Assume ¢ = YP,,(a U b), where p = ming Pr{(a U b),
and valy(s) < oo. Then valy(s) < |S| - maxreward ?

Answer: Nol Letp=Jand0<q<1.

a a b

. O,
O— 00— —QO
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A Counter-Example

Question: Assume ¢ = YP,,(a U b), where p = ming Pr{(a U b),
and valy(s) < oo. Then valy(s) < |S| - maxreward ?

Answer: Nol Letp=Jand0<q<1.

q
Ot b Wia
S
bola \aj \a/ b

Note: valy(s) = —|1/ log, q].
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Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:
3 1 1 1

M: AVt | M| < | M| - maxreward
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Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:
3 1 1 1

M: AVt | M| < | M| - maxreward

Fact: For a Markov chain with rewards 0 and 1, the probabilities
Prs(a U b) can be computed in time poly(|M|) - logr.
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Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:
3 1 1 1

M: AVt | M| < | M| - maxreward

Fact: For a Markov chain with rewards 0 and 1, the probabilities
Prs(a U b) can be computed in time poly(|M|) - logr.

Hence: Binary search in the interval [0, —[In(q - p) | - n - maxreward - m"]
with g = Prg(a U b) can be used to determine valy(s) for ¢ = P,,(a U; b).
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Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:
3 1 1 1

M: AVt | M| < | M| - maxreward

Fact: For a Markov chain with rewards 0 and 1, the probabilities
Prs(a U b) can be computed in time poly(|M|) - logr.

Hence: Binary search in the interval [0, —[In(q - p) | - n - maxreward - m"]
with g = Prg(a U b) can be used to determine valy(s) for ¢ = P,,(a U; b).

Note: ~[In(q - p)] = poly(|M]) + ||p]|.
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Markov Chains

Reduce MCs with non-negative rewards to MCs with rewards 0 and 1:
3 1 1 1

M: AVt | M| < | M| - maxreward

Fact: For a Markov chain with rewards 0 and 1, the probabilities
Prs(a U b) can be computed in time poly(|M|) - logr.

Hence: Binary search in the interval [0, —[In(q - p) | - n - maxreward - m"]
with g = Prg(a U b) can be used to determine valy(s) for ¢ = P,,(a U; b).
Note: ~|In(q - p) | = poly(|M]) + lp]]-

Theorem

Quantile Queries can be evaluated in pseudo-polynomial time on
Markov chains.
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Conclusion

Results:
» Polynomial algorithm for qualitative queries.
» Exponential algorithm for quantitative queries.

» Pseudo-polynomial algorithm for Markov Chains.
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Conclusion

Results:
» Polynomial algorithm for qualitative queries.
» Exponential algorithm for quantitative queries.

» Pseudo-polynomial algorithm for Markov Chains.

Future work:
> Queries of the form Q(a U, b).
» Long-run average rewards.

» PRCTL with parameters.
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