51,911 research outputs found

    Massive sterile neutrinos as warm Dark Matter

    Get PDF
    We show that massive sterile neutrinos mixed with the ordinary ones may be produced in the early universe in the right amount to be natural warm dark matter particles. Their mass should be below 40 keV and the corresponding mixing angles sin^2 2\theta > 10^{-11} for mixing with \nu_\mu or \nu_\tau, while mixing with \nu_e is slightly stronger bounded with mass less than 30 keV.Comment: 13 pages, 1 figure, references and acknowledgement added; discussion on SN bound updated, matches version in Astropart.phy

    Spectral distortion of cosmic background radiation by scattering on hot electrons. Exact calculations

    Get PDF
    The spectral distortion of the cosmic background radiation produced by the inverse Compton scattering on hot electrons in clusters of galaxies (thermal Sunyaev-Zeldovich effect) is calculated for arbitrary optical depth and electron temperature. The distortion is found by a numerical solution of the exact Boltzmann equation for the photon distribution function. In the limit of small optical depth and low electron temperature our results confirm the previous analyses. In the opposite limits, our method is the only one that permits to make accurate calculations.Comment: 18 pages, 7 figures, to be published in Ap

    Why does the Jeans Swindle work?

    Full text link
    When measuring the mass profile of any given cosmological structure through internal kinematics, the distant background density is always ignored. This trick is often refereed to as the "Jeans Swindle". Without this trick a divergent term from the background density renders the mass profile undefined, however, this trick has no formal justification. We show that when one includes the expansion of the Universe in the Jeans equation, a term appears which exactly cancels the divergent term from the background. We thereby establish a formal justification for using the Jeans Swindle.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter

    Metric adjusted skew information: Convexity and restricted forms of superadditivity

    Full text link
    We give a truly elementary proof of the convexity of metric adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric adjusted skew informations. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to general metric adjusted skew informations. We finally show that a recently introduced extension to parameter values 1<p≀2 1<p\le 2 of the WYD-information is a special case of (unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou

    Shear Viscosity of Quark Matter

    Full text link
    We consider the shear viscosity of a system of quarks and its ratio to the entropy density above the critical temperature for deconfinement. Both quantities are derived and computed for different modeling of the quark self-energy, also allowing for a temperature dependence of the effective mass and width. The behaviour of the viscosity and the entropy density is argued in terms of the strength of the coupling and of the main characteristics of the quark self-energy. A comparison with existing results is also discussed.Comment: 15 pages, 4 figure

    Constraining neutrino physics with BBN and CMBR

    Get PDF
    We perform a likelihood analysis of the recent results on the anisotropy of Cosmic Microwave Background Radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard Big Bang Nucleosynthesis. We also consider degenerate Big Bang Nucleosynthesis to provide new bounds on effective relativistic degrees of freedom NÎœN_\nu and, in particular, on neutrino chemical potential Οα\xi_\alpha. When including Supernova Ia data we find, at 2σ2\sigma, NΜ≀7N_\nu \leq 7 and −0.01≀Οe≀0.22-0.01 \leq \xi_e \leq 0.22, âˆŁÎŸÎŒ,Ï„âˆŁâ‰€2.6|\xi_{\mu,\tau}|\leq 2.6.Comment: 6 pages, 3 figures, some reference adde

    Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps

    Full text link
    A density functional theory for colloidal dynamics is presented which includes hydrodynamic interactions between the colloidal particles. The theory is applied to the dynamics of colloidal particles in an optical trap which switches periodically in time from a stable to unstable confining potential. In the absence of hydrodynamic interactions, the resulting density breathing mode, exhibits huge oscillations in the trap center which are almost completely damped by hydrodynamic interactions. The predicted dynamical density fields are in good agreement with Brownian dynamics computer simulations

    Dynamical arrest and replica symmetry breaking in attractive colloids

    Get PDF
    Within the Replica Symmetry Breaking (RSB) framework developed by M.Mezard and G.Parisi we investigate the occurrence of structural glass transitions in a model of fluid characterized by hard sphere repulsion together with short range attraction. This model is appropriate for the description of a class of colloidal suspensions. The transition line in the density-temperature plane displays a reentrant behavior, in agreement with Mode Coupling Theory (MCT), a dynamical approach based on the Mori-Zwanzig formalism. Quantitative differences are however found, together with the absence of the predicted glass-glass transition at high density. We also perform a systematic study of the pure hard sphere fluid in order to ascertain the accuracy of the adopted method and the convergence of the numerical procedure.Comment: 7 pages, 6 figure

    Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon

    Get PDF
    We employ the quantum state of a single photon entangled with the vacuum (|1,0>-|0,1>), generated by a photon incident upon a symmetric beam splitter, to teleport single-mode quantum states of light by means of the Bennett protocol. Teleportation of coherent states results in truncation of their Fock expansion to the first two terms. We analyze the teleported ensembles by means of homodyne tomography and obtain fidelities of up to 99 per cent for low source state amplitudes. This work is an experimental realization of the quantum scissors device proposed by Pegg, Phillips and Barnett (Phys. Rev. Lett. 81, 1604 (1998)

    Kinetics of Surfactant Adsorption at Fluid/Fluid Interfaces: Non-ionic Surfactants

    Full text link
    We present a model treating the kinetics of adsorption of soluble surface-active molecules at the interface between an aqueous solution and another fluid phase. The model accounts for both the diffusive transport inside the solution and the kinetics taking place at the interface using a free-energy formulation. In addition, it offers a general method of calculating dynamic surface tensions. Non-ionic surfactants are shown, in general, to undergo a diffusion-limited adsorption, in accord with experimental findings.Comment: 6 pages, 3 figures, see also cond-mat/960814
    • 

    corecore