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Abstract

We show that massive sterile neutrinos mixed with the ordinary ones may
be produced in the early universe in the right amount to be natural warm
dark matter particles. Their mass should be in the range 1-40 keV and the
corresponding mixing angles sin22θ = 10−8 to 10−11 for mixing with νµ or
ντ , and mixing with νe is marginally allowed with mass about 30 keV and
sin2θ ≈ 10−11.

1 Introduction

There seems to be convincing experimental evidence for non-zero neutrino masses and

mixing angles (for a review see e.g. [1]), and if all the present day data are correct,

there must exist at least one sterile neutrino species. These neutrinos should be

very light (sub eV range) and hence contribute negligibly to the cosmological energy

density [2]

Ωνh
2 =

mν

92eV
, (1)

if they were produced with the equilibrium number density in the early universe

at a temperature below ∼ 10 MeV. If their number density was smaller than the

equilibrium one, then the permitted value of the mass could be correspondingly higher.
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One could easily envisage more than one sterile neutrino species. The masses

and mixing angles of these extra neutrinos are essentially free parameters. If we

consider sterile neutrinos with masses 10 − 200 MeV, then big bang nucleosynthesis

and energy loss arguments for SN 1987A allow one to exclude mixing angles in the

range sin22θ = 10−1 − 10−12 [3]. On the other hand, direct terrestrial experiments

exclude supplementary mixing angles in the range sin22θ = 0.001− 1 [4]. We should

mention that there is still some non-excluded parameter space for m < 40 MeV and

sin22θ = 0.01− 1.

The hypothesis that sterile neutrinos could make a considerable contribution to

cosmological dark matter has a rather long history. The idea that right-handed sterile

neutrinos may form warm dark matter was briefly discussed in ref. [5] and was further

pursued in the paper [6]. In more detail warm dark matter cosmology was considered

in ref. [7]. There are some other warm dark matter candidates discussed in the

papers [8, 9]. Sterile neutrinos coming from mirror world may also make WDM in

our universe; they were discussed in the papers [10]. More models and references can

be found in the recent works [11, 12]. A dark matter model with sterile neutrinos

but with a non-thermal spectrum was considered in ref. [13]. Such neutrinos could be

produced by the resonance oscillations in the early universe in the presence of a large

lepton asymmetry. This model was further considered in ref. [14], where constraints

originating from consideration of decays of νs, especially of the radiative one, were

presented.

In this paper we find the allowed values of mass and mixing angle of a sterile neu-

trino, νs, so that the latter could be a dominant dark matter particle. We will consider

the production of νs in the early universe, calculate their energy spectrum, discuss

their different decay modes, and derive bounds on mass/mixing from cosmology and

astrophysics.
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2 Production of νs in the early universe

Let us consider for simplicity a two-neutrino mixing scheme, where one of the active

neutrinos, νa = νe, νµ or ντ , mixes with a heavy mainly sterile neutrino, νs,

νa = cos θ ν1 + sin θ ν2 ,

νs = − sin θ ν1 + cos θ ν2 , (2)

where ν1 and ν2 are assumed to be the light and heavy mass eigenstates respectively,

and θ is the vacuum mixing angle. We will consider small mixing angles, and hence

sometimes refer to the light neutrino mass eigenstate as the active neutrino and the

heavy one as sterile neutrino.

We assume that sterile neutrinos were initially absent in the primeval plasma and

were produced through the mixing with active ones. The production rate is usually

approximated as [15]

Γ/H =
sin22θM

2

(
T

TW

)3

, (3)

where H is the Hubble expansion parameter, T is the plasma temperature, and TW

is the decoupling temperature of the active neutrinos, which is approximately taken

about TW = 3 MeV. Instead of this approximate equation, below we will write down

and solve the exact momentum dependent Boltzmann equation, taking into account

the processes of production of νs but neglecting inverse reactions. The latter are

not important if the number density of νs is small. In this more precise approach

the question of the value of TW never appears, it is solved automatically. Another

advantage of our approach here is that it permits to calculate the energy spectrum of

νs, while the previous method permitted only to estimate the total number density.

Before doing these calculations it may be instructive to make the standard simplified

estimates and later compare them with the exact results found below.
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The mixing angle sin22θM is suppressed at large temperatures due to matter ef-

fects, and for νµ or ντ mixing it can be written as [16]

sin 2θM ≈ sin 2θ

1 + 0.8× 10−19 (Tγ/MeV)6(δm2/MeV2)−1
, (4)

where the coefficient in front of the second term in the denominator was obtained by

a rather arbitrary procedure of thermal averaging of the factor 〈E2〉 ≈ 12T 2, entering

the ratio of the neutrino refraction index to the vacuum term δm2/2E2. We see

from this expression that matter effects become essential and suppress the mixing for

Tγ > 0.15 GeV (m/keV)1/3 (a similar argument was made in ref. [6] for the left-right

neutrino mixing). For the (νe − νs)-mixing the factor in the denominator should be

2.7 instead of 0.8. We will assume here that δm2 = m2
2−m2

1 is positive (specifically we

assume m1 � m2), and if instead the active neutrino is heavy the analysis somewhat

changes (see section 4 and ref. [13]).

For the energy dependent calculations we need the expression for the matter effects

in the denominator of eq. (4) prior to averaging over the thermal bath. The latter

can be read off from the relevant equations of refs. [16, 15]

sin 2θM =
sin 2θ

1 + 3.73 · 10−20 c2 m(MeV)−2 (y2/x6)
, (5)

where the νs mass, m, is measured in MeV and we introduced the new variables, x =

1MeV× a, y = Ea, and neglected a possible entropy release so that the temperature

drops according to T = 1/a. The numerical coefficient c2 depends upon the neutrino

flavour: c2 = 0.61 for νe and c2 = 0.17 for ντ and νµ. However, for the temperatures

close to or above the muon mass c2 becomes the same for νe and νµ.

The Boltzmann equation describing the evolution of the sterile neutrino distribu-

tion function, fs, in terms of these new variables takes the form:

xH∂xfs = Icoll , (6)
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where the collision integral is given by

Icoll =
1

2Es

∫
d3p2

(2π)32E2

|A|2f3f4dτ3,4 (7)

where dτ3,4 is the phase space element (together with the energy-momentum δ-

function) of the particles l3 and l4 in whose collision νs is produced,

l3 + l4 → νs + l2 , (8)

and f3,4 are their distribution functions. We assume that the latter are equal to their

equilibrium values and then the conservation of energy gives f3f4 = exp(−y1 − y2)

in the Boltzmann approximation. Integrating the probabilities of all the relevant

processes over phase space (see the appendix) allows to find the collision integral and

to solve the equation (7) analytically

fs = 3.6 · 108 sin2 θ
(
1 + g2

L + g2
R

)
c
−1/2
2 m(MeV)

(
10.75

g∗

)1/2

fa , (9)

where fa is the distribution function of any of the active neutrinos, and g∗ is the

number of relativistic degrees of freedom at the time when the sterile neutrinos were

produced. Subsequent to the production there will be a dilution of the active neutrinos

relative to the sterile ones. This is described by another factor (g∗/10.75).

The coefficient relating fs to fa in eq. (9) is independent on the energy of neutrinos,

so the spectrum of νs remains the same as that of active neutrinos. This is somewhat

surprising because the reaction rate is proportional to the neutrino energy. However

for smaller E the rate becomes efficient at higher temperature, as one can see from the

expression (5) describing the suppression of neutrino mixing in matter. This effect

compensates the factor y in the kinetic equation. However at very large T ∼ MW,Z ∼
100 GeV the weak reaction rate drops down so that the spectrum would be somewhat

distorted at very small y’s.

5



It is interesting to compare the accurate results presented above with the simplified

calculations based on the solution of the following approximate kinetic equation:

Hx∂xfs =
1

2
sin2 2θM ΓW fa , (10)

where the mixing angle and interaction rate can be taken from eqs. (3, 4). This

equation is easily integrated, and we find that the result for the total number density

of νs agree within a factor of 2 with the more accurate result (9).

Up to now we have seen how the produced amount of sterile neutrinos depends

on the mass and mixing angle, so let us instead ask: how many sterile neutrinos

should be produced in order for them to be a dark matter candidate? Let us take

ΩDM = 0.3, which means that we must demand ρs = 3 h2keV/cm3. Using h = 0.65

and ntoday
α = 100/cm3 one finds

ns = 1.27× 10−5 nα

(
MeV

m

)(
ΩDM

0.3

)(
h

0.65

)2

, (11)

and comparing eqs. (9) and (11) obtains

sin2 θ = 3.6× 10−14 c
1/2
2

(1 + g2
L + g2

R)

(
10.75

g∗

)1/2 (
MeV

m

)2

. (12)

This equation thus describes a line in mass-mixing parameter space, where the

sterile neutrino must lie, if it indeed is the dominant dark matter particle. Let us now

see how decay processes and supernovae can further restrict this parameter space.

3 Decay

The mixing couples the heavier ν2 to the Z-boson, and allows the decay channel

ν2 → ν1 + ` + ¯̀, (13)

where ν1 is mostly an active flavour and ` is any lepton with a mass smaller than half

the mass of the heavy neutrino. This mixing angle can be translated into decay time

τ =
105 f(m)

m(MeV)5 sin22θ
sec , (14)
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where f(m) takes into account the open decay channels (for m < 1 MeV only the

neutrino channels are open, and f(m) = 0.86, while for ms > 2me the e+e−-channel is

also open and f = 1). Now, for the sterile neutrino to be a dark matter candidate we

must demand that it does not decay on cosmic time scales, which means τ > 4×1017

sec, and hence from eq. (14) we get

sin22θ < 2.5× 10−13 f(m)

m(MeV)5
. (15)

We can, however, get even a stronger bound by considering the radiative decay

νs → νa + γ , (16)

where νa is any of the active neutrinos. This decay will contribute with a distinct

line into the diffuse photon background near m/2. The branching ratio for the reac-

tion (16) was found [17] to be: BR ≈ 1/128. The flux of electromagnetic radiation

form the decay was calculated in the papers [18, 19] (see also refs. [20, 14]). In the

case of a large life-time, larger than the universe age, and of the matter dominated

flat universe the intensity of the radiation in the frequency interval dω is equal to:

dI = (BR)
n(0)

s

Hτs

ω1/2dω

(ms/2)3/2
(17)

where n(0)
s is the present day number density of νs and H is the Hubble constant. We

neglected here corrections related to the a possible dominance of the lambda-term in

the latest history of the universe.

Assuming the following rather conservative upper limit for the flux (see e.g.

ref. [20]):

dF
dΩ

< 0.1
(

1MeV

E

)
cm−2sr−1sec−1 (18)

and taking the accepted now values Ωs = 0.3 and h = 0.65 we find: τ > 4 × 1022,

which leads to the bound

sin22θ < 2.5× 10−18 f(m)

m(MeV)5
. (19)
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A mass independent lower bound can be found by considering the energy loss

argument for SN 1987A, for ms < 3TSN ≈ 100 MeV. Sterile neutrinos produced due to

mixing with the active ones inside the supernova would carry away too much energy,

hence shortening the explosion. The excluded mixing angles have been calculated

several times for SN 1987A, and the results are about sin22θ < 3× 10−8 for νµ or ντ

mixing [3] and sin22θ < 10−10 for the νe mixing [21].

Figure 1: Bounds from νe−νs mixing. The middle full line describes the mass-mixing
relationship if sterile neutrinos are the dark matter. The two other full lines allow a
factor 2 uncertainty in the amount of dark matter, ΩDM = 0.15− 0.6. The hatched
region for big masses is excluded by the Diffuse Gamma Background. The hatched
region for big mixing angles is excluded by the duration of SN 1987A..

Plotting the equation describing the production, eq. (12), together with the bounds

from SN 1987A and radiative decay, makes it obvious that νe − νs mixing (see fig. 1)

as the producer of dark matter is only marginally allowed with m ≈ 30 keV and

sin2θ ≈ 10−11. The two thinner full lines in the figure allow for a factor 2 uncertainty

in the amount of dark matter, ΩDM = 0.15 − 0.60. In fig. 2 we see that ντ − νs
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Figure 2: Same as fig. 1, for ντ − νs mixing..

(or νµ − νs) mixing is a far more promising possibility with an allowed mass range

m = 1− 40 keV and corresponding mixing angles sin2θ = 10−8 − 10−11.

Several comments are in order here. First we must check that the sterile neutrinos

are indeed relativistic when produced. This is the case, because the temperature Tmax

is about 1.3 GeV for m = 1MeV, and about 0.13 GeV for m = 1keV. Further, the

dilution factor is somewhere between 1 and 4 depending upon whether the production

happens before or after the QCD transition, and can thus enlarge the allowed region

slightly compared to the figures, where we for simplicity used g∗ = 10.75. Looking at

eq. (9) it seems that the sterile neutrinos follow an equilibrium distribution function.

This is not quite the case, because the small momentum neutrinos are produced first,

and hence their relative importance is increased by the subsequent entropy release

(which dilutes the active neutrinos). A different non-thermal effect can appear for νµ-

νs mixing, since the factor c2 is 0.17 when the µ’s are absent (for T � mµ), whereas
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it grows to c2 = 0.61 when the muons are fully present in the plasma. This means

that bigger momenta will be produced with a factor 1.9 more efficiently [22].

4 Discussion and conclusion

There are several other warm dark matter candidates as mentioned in the introduc-

tion, and one particularly interesting and related possibility is that the sterile neutrino

is lighter than the active, δm2 < 0, which allows a resonant transition, giving a non-

thermal spectrum [13]. In that resonant transition model the adiabaticity condition

demands the mixing angle in the region sin22θ > 10−9 − 10−7, which for νµ or ντ

mixing is near the excluded region from SN 1987A, and certainly will be covered with

the next nearby supernova. For νe mixing this possibility is already excluded by SN

1987A.

Let us return to the model considered in this paper, which undoubtly is the

simplest, oldest and, as we have seen, a very natural for warm dark matter. The

value of the νs mass can be found from the detailed analysis of large scale structure

formation. In the case of mixed dark matter scenario when both cold and warm dark

matter are cosmologically significant the νs parameter space is less constrained and in

particular permits masses below 1 keV which may be interesting for galaxy formation

problem [11]. With a future nearby supernova we will definitely reach deeper into

the relatively small allowed parameter space. Furthermore, better observations of the

diffuse γ background around E = 1− 20 keV should be able to cut away more of the

parameter space, or potentially make an indirect observation of dark matter.

A Solving the Boltzmann equation

All the relevant processes were presented in table 2 of ref. [3]. There are two kinds

of matrix elements, namely (p1p2)(p3p4) and (p1p4)(p3p2), and one finds from the
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integral over phase space that

∫
dτ34(p1p2)(p3p4) = 3

∫
dτ34(p1p4)(p3p2) =

(p1p2)

8π
. (20)

Now one can count all the relevant processes, integrate over momenta and find

Hx∂xfs =
5× 24

3π3
sin2 θ

(
1 + g2

L + g2
R

)
G2

F E1T
4 fa , (21)

where Hx = 4.5 × 10−22
(

g∗
10.75

)
x−1 MeV and GF = 1.1664 × 10−5 GeV. With the

variable ξ = y/x3 and β defined in eq. (5) the suppression of mixing angle is

sin 2θM =
sin 2θ

1 + β2ξ2
, (22)

and with the integral

∫ ∞
0

dξ

(
1

1 + β2ξ2

)2

=
4

π

1

β
, (23)

we find the result in eq. (9).
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[16] D. Nötzold and G. Raffelt, Nucl. Phys. B307 (1988) 924.

[17] V. Barger, R. J. Phillips and S. Sarkar, Phys. Lett. B352 (1995) 365.

[18] F.W. Stecker, Phys. Rev. Lett. 45 (1980) 1460.

[19] R. Kimble, S. Boyer, and P. Jacobsen, Phys. Rev. Lett. 46 (1981) 80.

[20] E. W. Kolb and M. S. Turner, “The Early Universe,” Redwood City, USA:

Addison-Wesley (1990).

12



[21] K. Kainulainen, J. Maalampi, and J.T. Peltoniemi, Nucl. Phys. 358 (1991) 435;

G. Raffelt and G. Sigl, Astropart. Phys. 1 (1993) 165.

[22] Lacking a better synonym than lukewarm dark matter, we decide to use the

standard name sterile neutrinos (see [11, 13] for great names like warmons or

coolDM).

13


