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Within the replica symmetry breaking framework developed by Mézard and Parisi we investigate the oc-

currence of structural glass transitions in a model of fluid characterized by hard sphere repulsion together with

short-range attraction. This model is appropriate for the description of a class of colloidal suspensions. The

transition line in the density-temperature plane displays a reentrant behavior, in agreement with mode coupling

theory and recent molecular dynamics simulations. Quantitative differences are found, together with the ab-

sence of the predicted glass-glass transition at high density. We also perform a systematic study of the pure

hard-sphere fluid in order to ascertain the accuracy of the adopted method and the convergence of the numeri-

cal procedure.
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I. INTRODUCTION

Understanding the physical conditions leading to dynami-
cal arrest in colloidal suspensions and protein solutions is
still attracting considerable interest f1g. Colloidal systems are
often modeled as simple fluids of slarged spherical particles
interacting via the hard-core repulsion plus, possibly, a short-
range attraction. The latter contribution may have diverse
physical origins, according to the specific system considered,
like the depletion mechanism or steric effects.

This simple model has been investigated by simulation

methods f2g and liquid-state theories f3g. The key dimension-

less parameter governing the physics of the system is the

ratio between the range of attraction sDd and the hard-sphere

diameter sdd which, in the following will be taken as the unit

of lengths. The equilibrium phase diagram is now well

known in a wide range of D and the stability of the fluid

phase as a function of D has been extensively discussed in

the literature. If the range D is such that at high densities

many particles lie within the respective ranges of attraction,

the overall effect of the attractions is expected f4g to be just

a shift in the ground-state energy of the system, while the

dynamical and thermodynamical properties are mostly deter-

mined by the hard cores of the particles. Conversely, if the

range of the attractive well is short enough, small displace-

ments of the particles can break one or more “energetic

bonds” and cause significant variations in the energy of the

microscopic state. While the hard-sphere fluid is a purely

entropic system, in this case we have both energetic and

entropic contributions to the free energy whose relative im-

portance can be tuned by varying the temperature and/or

density.

The possible occurrence of dynamical arrest in this model

has been studied via mode coupling theory sMCTd which

indeed predicts the existence of two distinct glassy states,

called “attractive” and “repulsive” glass, separated in the

phase diagram by a first-order transition line terminating in a

critical point f5,6g. This finding might have relevant conse-

quences on the experimentally accessible systems, and it is

therefore important to investigate the problem by alternative

techniques.

The occurrence of glassy states in statistical physics was

studied mostly by use of the replica approach in the frame-

work of spin glasses f7g. When considering a system with

quenched disorder, it is natural to introduce the whole en-

semble of possible realizations of the quenched variables.

For a variety of models it turns out that the values of many

quantities of physical interest equal, in the thermodynamic

limit, their average over the quenched variables. Subsequent

studies revealed that in order to produce glassy behavior, an

externally imposed quenched disorder is not essential be-

cause the frustration necessary for slow dynamics and dy-

namical arrest can be self-generated by the interparticle in-

teraction.

Throughout the formalism, different replicas are in prin-

ciple indistinguishable and the equations for a replicated sys-

tem are symmetric with respect to permutations of replicas;

yet replica symmetry breaking sRSBd solutions have proved

to be the appropriate solutions for the low-temperature

phases of several models. For such solutions, the correlation

functions between different replicas do depend on the replica

indices.

A general framework often used to account for the slow

dynamics of glasses is based on the analysis of a free energy

F, considered as a functional of the averaged density profile

f8g. The key feature is that at low temperatures F is expected

to develop a multiminimum structure and, if the free energy

barriers are high enough with respect to kBT, the configura-

tion space becomes essentially disconnected, leading to a

nonergodic behavior. The basic assumption underlying the

mean-field approach presented in this paper is the modeling

of the glassy nonequilibrium dynamics through such a free

energy landscape. Hence, since the whole formalism of equi-

librium thermodynamics promptly applies, we can refer to a

glassy state as a proper phase of the system. The dynamical

crossover observed experimentally is correspondingly re-

placed by a sharply defined phase transition. Although the

modeling through an equilibrium free energy landscape does

not necessarily imply the absence of a dynamics sf9g and

references thereind, in the present approach we deal only

with static correlation functions and neglect every time de-
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pendence of eventual relaxation processes occurring in the

liquid side of the phase diagram.

In this context, the introduction of replicas is a procedure

intended to unveil a possible multiminimum structure of the

free energy: it is natural to expect that for two replicas in the

same local minimum of F the correlation is larger than for

replicas in different minima. Hence, the appearance of a non-

trivial pattern of correlation among replicas si.e., the break-

ing of the replica symmetryd is the signature of the complex

free energy landscape characteristic of a glassy phase. In the

following, by studying the correlation functions between dif-

ferent replicas of a fluid system, we confirm the existence of

a RSB phase transition. The comparison of the resulting

phase diagram with experimental and numerical data on dy-

namical arrest in systems with short-range attractive interac-

tions strongly supports the interpretation of such a transition

as an ideal glass transition.

We point out that by “ideal” glass transition it is usually

meant a transition defined by a thermodynamic singularity

f10g. With the replica method, two critical densities are ob-

tained: the lower density signals the appearance of a complex

free energy landscape f11g with no thermodynamic singular-

ity. At the higher density the complexity vanishes non-

smoothly and this gives a true thermodynamic transition. In

f12g it was shown that the replica approach we are going to

use is not suitable for the description of the glassy phase and

leads to incorrect results for the thermodynamic transition.

For the time being we do not exclude that a more accurate

numerical study of the thermodynamic transition might yield

different results ssee Table I in Sec. IV and consider that the

grid used in f12g had only N=128 pointsd. However, in this

paper we limit our attention to the first transition, commonly

known as “dynamical” glass transition.

We first review the basic equations derived in f12g; then,
we perform a careful study of the hard-sphere system, in

order to test the accuracy of the method and to estimate the

numerical uncertainty of our results. Finally, we investigate

the effects of a short-range interaction and compare our re-

sults with MCT predictions. We anticipate that, although the

transition line we find is rather similar to those of MCT

clearly showing the predicted reentrant behavior, we have no

evidence in favor of a glass-glass transition, within the

adopted approximations.

II. REPLICA METHOD FOR STRUCTURAL GLASSES

According to the previous discussion, in order to imple-

ment the replica symmetry breaking scheme for a model of

fluid, we need a formal expression for the free energy func-

tional of a mixture of n identical copies sreplicasd of the

original system. In the following, the indices a and b identify

different replicas. Such a generalized free energy functional

F depends on the two-body interactions among particles

Uabsrd sboth intrareplica and interreplicad and on the two-

point correlation functions gabsrd=habsrd+1, whose entries

are labeled by replica indices: ordinary sintrareplicad two-

point functions on the diagonal and interreplica correlation

functions as off-diagonal elements. The original physical

system can be recovered by setting n=1. The key property of

the functional F is to attain its global minimum when the pair

correlations gabsrd assume the physical value corresponding

to the given interaction Uabsrd. RSB occurs when a nontrivial

minimum si.e., a solution with finite correlations among dif-

ferent replicasd is present in the physical limit of uncoupled

replicas Uabsrd=Usrddab. For a homogeneous system, the

general structure of the free energy density functional is

FfU,gg = o
a,b

rarb

2
E d3xgabsxdUabsxd − TSfgg . s1d

The internal energy contribution is exactly given by the first

term of Eq. s1d while the entropy density S is known to be a

functional of the pair correlation functions alone, which can

be written f13g as a sum of p-particle contributions: S

=opsp. By use of the Gibbs-Bogoliubov inequality f14g it is

easy to prove that the functional F defined in Eq. s1d satisfies
the requirements previously mentioned. Unfortunately, a

closed expression for the entropic contribution S is not avail-

able and we have to resort to some approximation. Following

Ref. f12g we keep the exact two-body term of the excess

entropy s2,

s2 = − kBo
a,b

n
rarb

2
E d3xfgabsxdln gabsxd − habsxdg , s2d

while approximating the residual contribution DS=S−s2 in

terms of the pair distribution function:

DS = − kB
1

2
E d3q

s2pd3
TrL„rhsqd… , s3d

where the function Lsyd is defined as

Lsyd = − lns1 + yd + y −
y2

2

and hsqd represents the n3n matrix whose elements are the

Fourier transforms of the correlation functions habsrd. This
form follows the resummation of the infinite class of non-

crossing diagrams in the formal expansion of the entropy as

a functional of hsrd. Collecting all terms together we find the

final expression for the free energy functional:

2bF = r2E d3xo
a,b

n

hgabsxdfln gabsxd + bUabsxdg − habsxdj

+E d3q

s2pd3
TrL„rhsqd… . s4d

In the case of a single component sn=1d, the minimiza-

tion of the free energy functional s4d leads to the usual hy-

pernetted chain sHNCd integral equation for the pair correla-

tion:

ln gsxd = − bUsxd +Wsxd ,

Wsxd =E d3p

s2pd3
e−ip·x

rh2spd
1 + rhspd

. s5d

Yet by keeping n unspecified, a second equation is obtained:

the appearance of multiple solutions for this new equation
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signals a phase transition. Given the replicated free energy,

the fundamental ansatz is a one-step RSB. As we said, in

general, a RSB directly mirrors a change in the “effective

topology” of the configuration space which takes on a mul-

tivalley structure, with “disconnected” single-valley do-

mains. By choosing a one-step RSB we impose only two

possible patterns for the functional form of the correlations

between replicas: either two replicas are in the same mini-

mum of the free energy or they are in different minima; in

the latter case we assume that the correlation of every pair of

replicas is the same, no matter what the two minima are. In

particular, for a structurally disordered material, we expect

that any spatial correlation between two replicas in different

minima should vanish: this conjecture follows from the ob-

servation that the correlation between different disordered

configurations, despite possible local similarities, should

vanish in the thermodynamic limit, when averaged over the

infinite volume of the system. A formal argument for the

relevance of the one-step RSB in structural glasses and a

physical interpretation of m sdefined belowd in terms of ef-

fective temperature is presented in f15g. In terms of correla-

tion matrices, the standard procedure is to group the n repli-

cas into n /m sets with m replicas each. Ideally, the m replicas

within a block are in the same minimum of F. The “topo-

logical” structure of the matrix of correlation functions gab is

pictorially depicted in Fig. 1: The black squares represent the

ordinary two-point correlation functions for a fluid sg*d; the
correlation functions in the light-gray blocks sg0d are as-

sumed to be unity sdifferent minima are unrelatedd and the

correlation functions in the dark-gray blocks sg1d may be

nontrivial sreplicas in the same minimumd. The interaction

potential Uab has the same structure: U* terms on the diago-

nal, representing the physical interaction between particles,

U1 for the off-diagonal terms of the blocks on the diagonal,

to enforce a coupling between replicas in the same group,

and U0;0 for the off-diagonal blocks f19g. U0=0 implies

h0=0, and because of such a block-diagonal form of the

correlations, the free energy per replica turns out to be inde-

pendent of n and the problem reduces to the study of any of

the n /m blocks of dimension m3m sf16g fFig. IIscdg). Ex-
pressing F in terms of g* and g1,

2bF

nr2
=E d3x„g*sxdfln g*sxd + bU*sxdg − h*sxd − s1 − md

3hg1sxdfln g1sxd + bU1sxdg − h1sxdj…

−E d3q

s2pd3
S 1

mr2
lnf1 + rh*sqd − s1 − mdrh1sqdg

−
h*sqd

r
+
h*
2sqd

2
−
1 − m

mr2
lnf1 + rh*sqd − rh1sqdg

− s1 − md
h1
2sqd

2
D . s6d

The stationary condition with respect to g* is the usual HNC

equation s5d with Usxd substituted by U*sxd, while, due to a

simplification of factors s1−md, the extremal equation for the

interreplica correlation function g1 is nontrivial also in the

“physical” case m→1:

ln g1sxd = − bU1sxd +W1sxd ,

W1sqd =
rh*

2sqd

1 + rh*sqd
−

rfh*sqd − h1sqdg2

1 + rfh*sqd − h1sqdg
. s7d

Because of the nonlinear structure of Eq. s7d, we can now

hope to obtain nontrivial solutions g1sxd which would other-

wise be ruled out by the replica symmetry of the partition

function. Indeed, we will show that the extremal equations

for the free energy s6d admit nontrivial correlations between

replicas fi.e., a nontrivial h1sxdg, even for vanishing interrep-

lica coupling. The typical behavior of such a solution is

shown in Fig. 2.

FIG. 1. Replica symmetric sleftd and one-step replica symmetry

breaking scenterd form of the correlation matrix for a replicated

system. The black squares represent single elements sg*d, while the

dimension of the n3n matrix slight gray for g0d and of the m3m

blocks sdark gray for g1d is, in general, not fixed. In the figure, n

=6 and m=3. Since in the physical case of zero replica coupling the

correlators corresponding to the light-gray area vanish, the numeri-

cal computations can be simplified by considering only one of the

blocks srightd.

FIG. 2. An example of correlation functions for sticky spheres

close to the dynamical glass transition. The thermodynamic state is

r=1.1878 and T=0.6, and the data refer to the system with D
=1/64.
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To summarize, starting with a one-component model of

fluid, by introducing m identical copies and taking the limit

m→1 after simple algebraic manipulations of the approxi-

mate free energy functional s4d, we obtain the usual HNC

equation for the two-point function and one additional equa-

tion which describes correlations between different replicas.

Since for m=1 an interreplica correlation has apparently no

meaning, we could naively interpret h1sxd as an infinite-time

limit of some sort of self-correlation function. Unfortunately,

although carrying information about the breaking of ergod-

icity, it seems that h1sqd is not directly related to the usual

nonergodicity factor si.e., the infinite-time limit of the inter-

mediate scattering functiond.

III. SOLUTION OF THE EQUATIONS

For any density, h1sxd;0 is a solution of Eq. s7d. By

linearizing Eq. s7d around h1sxd;0 it can be shown that, if

another solution exists, it does not bifurcate from the trivial

one. However, if we introduce a strong enough f17g coupling
between replicas, the linearized equation does not forbid a

continuous bifurcation of solutions and a second solution has

indeed been found. When the coupling is eventually turned

off, one of these solutions converges to h1sxd;0 s“liquid”
solutiond, while the other one maintains a spatial structure

s“glassy” solutiond. This signals a multiminimum free en-

ergy, which we interpret as a nonergodic phase. In fact, the

free energy is now a functional of g* and g1: the occurrence

of a second minimum with g1Þ0 mirrors the appearance of

many minima in Ffkrsxdlg f18g. The glassy solution of Eq.

s7d does not exist for all values of the control parameters but

only in a region of the density-temperature plane, and the

boundary between the one-solution and two-solution do-

mains in the phase diagram marks the glass transition.

The two-point functions h*sxd and h1sxd are computed by

the numerical solution of Eq. s7d. We first introduce a mesh

in the radial coordinate, thereby reducing the unknown func-

tion h1sxd to a set of N discrete values fh1sxd°h1sxid, i

=1, . . . ,Ng. Then we use the iterative Newton-Raphson

method for solving the resulting set of nonlinear equations.

In order to find a nontrivial result, we proceed as follows:

starting from the “liquid” solution at low density sr,rtd, we

introduce a finite attractive coupling U1 among replicas f19g
and subsequently increase gradually the density until a con-

tinuous bifurcation takes place. We then follow the glassy

solution and finally reduce to 0 the coupling between repli-

cas, obtaining a nontrivial correlation function h1sxd even for

vanishing interreplica coupling. The transition density rt can

then be pinpointed by decreasing sat zero interreplica cou-

plingd the density until the glassy minimum of the free en-

ergy disappears. The values we report in the following for

the transition densities are the first ones for which our algo-

rithm does not find the glassy solution. Theoretically, the

introduction of a coupling among replicas provides a way to

discover multiple degenerate states; in this case it is moti-

vated only by the computational convenience to obtain a

continuous bifurcation of the new minimum of the free en-

ergy from the known one.

IV. HARD-SPHERE FLUID

The glass transition in the hard-sphere fluid has already

been studied by the replica method in Refs. f12,17g. Here we

consider the dependence of the critical density on the choice

of the discretization parameters used in the numerical solu-

tion and we provide an estimate of the transition density rt.

Given the number of points N for the discretization of the

correlation functions, the only arbitrary choice is the mesh

size a=1/Nd swhere Nd is the number of points used to de-

scribe a hard-sphere diameterd. It then follows that we can

describe a correlation function hsrd only for rP f0,N /Ndg.
The physical limit should require both a→0 and N /Nd→`.

After choosing a value for Nd, we proceed by calculating

the transition density for grids with more and more points N

while keeping Nd fixed: for N large enough, the value of the

transition density becomes independent of N and we can la-

bel it as rtsNdd. Repeating the procedure for larger and larger

Nd’s the sequence of values we obtain converges to a finite

value. Our results for the hard sphere fluid are summarized in

Table I.

It is clear that only when N /Nd*4 are the values rtsNdd
almost independent of N. If we now consider the values ob-

tained for the 8192-point grid, by arbitrarily interpolating

TABLE I. Glass transition density rt for different choices of the discretization parameters: total number of

mesh points, N, and number of points inside the hard-sphere diameter, Nd.

N 128 256 512 1024 2048 4096 8192

a Nd

5 32 1.1124 1.1031 1.1026 1.1026 1.1026 1.1026 1.1026

6 64 1.1364 1.1518 1.1391 1.1396 1.1396 1.1396 1.1396

7 128 1.1497 1.1681 1.1552 1.1560 1.1559 1.1560

8 256 1.1553 1.1753 1.1627 1.1636 1.1636

9 512 1.1578 1.1787 1.1663 1.1672

10 1024 1.1590 1.1804 1.1680

11 2048 1.1595 1.1812

12 4096 1.1598
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the values rtsNdd with a function of the form

rtsNd ; 2ad = rt − A exps− kad , s8d

we can extrapolate a limiting value rt ssee Fig. 3d.
Depending on the inclusion of the first five or six points in

the interpolation sa=5, . . . ,9 or a=5, . . . ,10 respectively,

the boldface entries in the tabled, we obtain rt=1.1699 or

rt=1.1695 scorresponding to a packing fraction ht<0.612d;
this should be considered the final prediction for the transi-

tion density of a hard-sphere fluid in the HNC approxima-

tion. This result is rather close to the random close-packing

limit shrcp,0.64d and is considerably higher than the predic-

tion of MCT sht,0.516d f5g. We note that recent experi-

ments suggest that, in the absence of gravity, the glass tran-

sition in “hard-sphere colloids” is in fact remarkably close to

hrcp f20g.
For the sake of completeness we obtained a similar table

for the thermodynamic glass transition also sup to a 4096-

point gridd: the extrapolation of the asymptotic density yields

rg.1.189, which is equivalent to a packing fraction hg

.0.623.

V. SQUARE-WELL FLUID

In order to model a colloidal suspension, we now inves-

tigate the effects of the presence of a short-range attraction

by adding an attractive square well to the repulsive hard

core. The interaction potential is thus

Usrd = 5
` , r ø d ,

− w0, d , r ø d + D ,

0, d + D , r .
6 s9d

As usual, we take d as the unit of lengths. The application of

the replica method is straightforward, but the phenomenol-

ogy is now potentially richer, since both the density and tem-

perature are meaningful thermodynamic parameters. By in-

serting the potential s9d into Eq. s5d and applying the

procedure described in Sec. III for different temperatures, we

determine a whole transition line rtsTd in the r-T plane.

In Fig. 4 we summarize the numerical study of the short-

range limit of the square-well fluid. The results agree with

the qualitative picture following from the above consider-

ations: at high temperatures the glass transition line in the

r-T plane is almost vertical and, as for the hard-sphere fluid,

the glass transition is governed by excluded volume effects.

At low temperatures, the transition line displays a strong

dependence on the temperature and only a slight dependence

on the density: the dynamical arrest is driven mainly by the

stickiness of the spheres. The replica method correctly cap-

tures both regimes, extending the transition line to densities

well below rt. Moreover, in a region of the phase diagram,

the “competition” between energy and entropy stabilizes the

liquid phase at densities larger than rt. This phenomenon,

commonly referred to as “reentrant behavior,” is also repro-

duced.

The computations were performed on a 4096-point grid

s512 points for a hard-sphere diameterd. Because of the very

short range of the attraction, few points were available to

describe the narrowest wells. Due to the nonlinearity of the

integral equations, an estimate of the errors introduced by

our discretization is quite difficult; yet, the qualitative behav-

ior of the transition line seems to be well established. As an

empirical test of the reliability of our results for wells de-

scribed with very few stwo or fourd points on the grid, we

repeated the computations for part of the phase diagram in

Fig. 4 using a looser grid s2048-point grid, 256 points for a

hard-sphere diameter and a corresponding rescaling by a fac-

FIG. 3. Dependence of the critical density on the grid: the dots

represent the data in the last column of the table; the dashed line is

the best fit using Eq. s8d.

FIG. 4. Phase diagram for the square well fluid for different well

widths D. The dashed line represents the hard sphere transition

density computed with the same discretization parameters.
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tor of 2 for the attractive wellsd. The numerical results agreed

within 0.2%.

The convergence of our algorithm becomes rather delicate

as we follow the liquid-glass transition line to low tempera-

tures and low densities, and we defer to future studies the

behavior of the transition line in such a limit. An intrinsic

limitation of our approach comes from the equilibrium char-

acter of the replica method, which cannot be applied below

the spinodal decomposition line.

As already found in the pure hard-sphere fluid, the tran-

sition densities are significantly higher s,15% d than those

obtained by MCT f5g and the corresponding critical tempera-

tures are lower, roughly by a factor of 2. The reentrant be-

havior of the glass transition, found by MCT, is confirmed by

RSB method when D is sufficiently small: while in MCT the

reentrance appears for D&5%, in our calculations a similar

shape is found only for D&1.5%. However, it is known that

the agreement between MCT and experimental or simulation

results is usually only qualitative and the predicted phase

diagrams are often arbitrarly translated and rescaled in order

to fit actual data. Numerical simulations usually resort to

fluid mixtures with different hard-core radii to avoid crystal-

lization; when compared with one of such phase diagrams

inferred by MD simulation f21g our results sobtained for a

monodisperse fluidd show that the replica approach locates

reasonably well the liquid-glass transition line. Yet the rep-

lica method requires well widths narrower approximately by

a factor of 2 in order to reproduce the same characteristic

reentrant behavior. As a general remark, we also emphasize

that the quantitative results obtained from the description of

extremely dense fluids through the HNC approximation on

which our computations are based are usually not completely

satisfactory.

VI. GLASS-GLASS TRANSITION

An interesting phenomenon that might be within the

scope of the replica approach is the glass-glass transition

predicted by MCT and confirmed by simulations f21g. In

particular, in a dynamical theory, the localization length of a

particle can be defined: s=limt→`kurstd−rs0du2l. In a solid or

in a glass, s attains a finite value, while it diverges in the

fluid phases. It has been shown f5g that s undergoes a dis-

continuous change across the glass-glass transition line, de-

creasing from its value in the repulsive glass to a smaller

value comparable to the attractive well width, in the

attraction-induced glass.

In our formalism, this information is not directly acces-

sible. However, a hint at the local structure of the glassy state

could be obtained by defining the quantity Psrd=4pr2g1srd
which represents the probability sper unit lengthd that two

particles belonging to different replicas lie at distance r from

one another. In Fig. 5 we plot such a probability for values of

the control parameters which, according to the MCT, should

identify distinct glassy phases. In all cases, the probability

distribution is uniformly spread over a region of the order of

a hard-sphere volume ssee Fig. 6d. Even considering other

observables such as the position of the local maximum of

Psrd for r.0.05 ssee Fig. 5d, comparable to MCT localiza-

tion length s, its position varies smoothly with the control

parameters and its value is always close to the one obtained

for the pure hard-sphere system. We cannot exclude that a

different choice for the replica symmetry breaking scheme

se.g., a two-step RSBd might lead to a well-defined glass-

glass transition: the two-step RSB would then represent the

splitting of the free energy minima revealed with the one-

step RSB into subminima representing a further trapping of

FIG. 5. Psrd for the same density sr=1.19d and D=1/128 but

different temperatures.

FIG. 6. Detailed structure of Psrd at short distance for the data

of Fig. 5. As the temperature decreases at constant density r
=1.19 no singular behavior of Psrd is observed.
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the caged particles within the range of the attractive wells.

This possibility is currently under investigation.

VII. CONCLUSIONS

In this paper we first investigated the occurrence of RSB

in a model of hard spheres, providing an accurate finite-size

scaling for the transition density. The mean-field replica ap-

proach implies a sharp sdynamicald glass transition; the

asymptotic result we obtained for hard spheres, at a packing

fraction of hrepl.0.612, should be compared with the MCT

value hMCT,0.52 and the commonly accepted value h
.0.58 for the slowing down of the dynamics of colloidal

suspension and simulated hard-sphere systems seven though

experiments conducted in microgravity conditions f20g have

recently raised this value, significantly closer to the random

close-packing limit hrcp,0.64d. By introducing attractive in-

teractions we obtained a glass transition line in the density-

temperature plane. The expected reentrant behavior related to

the change between “repulsive” and “attractive” glasses is

reproduced within the RSB approach. Quantitative discrep-

ancies with respect to MCT and numerical simulations are

found for the square-well fluid and analogously for the hard-

sphere case. Moreover, contrary to MCT, the attractive and

repulsive glassy regimes are smoothly connected with no

sign of a sharp transition. These results have been obtained

within a simple approximation of the more general RSB

method: we just considered the one-step RSB scheme and we

evaluated the entropy functional by a HNC-like expression.

It is clearly desirable to go beyond these limitations in order

to check the qualitative and quantitative stability of the re-

sults obtained in this work.
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