2,879 research outputs found

    All That Sprawl, Y’all: An Analysis of Development on Steinwehr Avenue and York Street in Gettysburg, Pennsylvania, from 1971 to 2014

    Full text link
    The advent of the automobile transformed the American landscape in the 20th century. In conjunction with the increasing importance of the automobile, numerous post-WW II government programs such as the Interstate Highway System encouraged suburban sprawl. Towns and cities adjacent to tourist attractions, known as gateway communities, face unique problems caused by sprawl. Gettysburg, Pennsylvania, is an example of a gateway community as it includes the Gettysburg National Military Park. Two study sites, portions of Steinwehr Avenue and York Street, were studied to analyze the effects of sprawl in Gettysburg. The sites were analyzed using ArcGIS, data compiled from historic phonebooks, and discussions with local business owners. Development along York Street exemplifies an auto-centric culture with many regional and national chain establishments set back from the road. Steinwehr Avenue represents a walkable community comprising on-street parking, sidewalks, and local “mom-and-pop” establishments. Trends associated with categories of businesses varied between the two sites and revealed different development patterns. We predict that that York Street will continue to sprawl while Steinwehr Avenue development will be limited due to its close proximity to the battlefield

    Temperature effects on the magnetization of quasi-one-dimensional Peierls distorted materials

    Full text link
    It is shown that temperature acts to disrupt the magnetization of Peierls distorted quasi-one-dimensional materials (Q1DM). The mean-field finite temperature phase diagram for the field theory model employed is obtained by considering both homogeneous and inhomogeneous condensates. The tricritical points of the second order transition lines of the gap parameter and magnetization are explicitly calculated. It is also shown that in the absence of an external static magnetic field the magnetization is always zero, at any temperature. As expected, temperature does not induce any magnetization effect on Peierls distorted Q1DM.Comment: 11 pages, 2 figure

    Slow Switching in Globally Coupled Oscillators: Robustness and Occurrence through Delayed Coupling

    Get PDF
    The phenomenon of slow switching in populations of globally coupled oscillators is discussed. This characteristic collective dynamics, which was first discovered in a particular class of the phase oscillator model, is a result of the formation of a heteroclinic loop connecting a pair of clustered states of the population. We argue that the same behavior can arise in a wider class of oscillator models with the amplitude degree of freedom. We also argue how such heteroclinic loops arise inevitably and persist robustly in a homogeneous population of globally coupled oscillators. Although the heteroclinic loop might seem to arise only exceptionally, we find that it appears rather easily by introducing the time-delay in the population which would otherwise exhibit perfect phase synchrony. We argue that the appearance of the heteroclinic loop induced by the delayed coupling is then characterized by transcritical and saddle-node bifurcations. Slow switching arises when the system with a heteroclinic loop is weakly perturbed. This will be demonstrated with a vector model by applying weak noises. Other types of weak symmetry-breaking perturbations can also cause slow switching.Comment: 10 pages, 14 figures, RevTex, twocolumn, to appear in Phys. Rev.

    The Status of a PA Endangered Bird- the Upland Sandpiper

    Full text link
    The upland sandpiper (Bartramia Longuardia) has experienced a steep population decline in the northeastern U.S. since the mid-20th Century. In Pennsylvania it was found in less than 0.5% of atlas blocks during the Second Atlas of Breeding Birds in Pennsylvania project (2nd PBBA; 2004-09) and breeding was confirmed at only two locations. Due to continued declines and a small population size, the upland sandpiper was listed as PA endangered in 2012. During May 2012 the areas around 15 2nd PBBA upland sandpiper sightings were resurveyed by Gettysburg College students and volunteer birdwatchers. The aim was to establish whether the atlas records related to persisting populations. We used five-minute audio playback at up to 10 locations within 4km of the atlas sightings. A maximum of 19 pairs/calling male upland sandpipers were found across the state in 2012, most of them on or close to reclaimed surface mines. However, locating such a scarce species can be problematic, and it is still not known to what extent the species is under-reported. To help direct future surveys we analyzed data from the 2nd PBBA and the 2012 survey to produce a habitat suitability model for the upland sandpiper in Pennsylvania. We used a GIS framework to determine areas of suitable habitat and then stratified these by proximity to recent (2004-2012) upland sandpiper sightings. We recommend that our suitability model be used to establish a sampling protocol for more thorough statewide upland sandpiper survey every five years, in order that the species’ precarious status can be closely monitored

    Dynamical systems with time-dependent coupling: Clustering and critical behaviour

    Full text link
    We study the collective behaviour of an ensemble of coupled motile elements whose interactions depend on time and are alternatively attractive or repulsive. The evolution of interactions is driven by individual internal variables with autonomous dynamics. The system exhibits different dynamical regimes, with various forms of collective organization, controlled by the range of interactions and the dispersion of time scales in the evolution of the internal variables. In the limit of large interaction ranges, it reduces to an ensemble of coupled identical phase oscillators and, to some extent, admits to be treated analytically. We find and characterize a transition between ordered and disordered states, mediated by a regime of dynamical clustering.Comment: to appear in Physica

    Synchronization of Integrate and Fire oscillators with global coupling

    Full text link
    In this article we study the behavior of globally coupled assemblies of a large number of Integrate and Fire oscillators with excitatory pulse-like interactions. On some simple models we show that the additive effects of pulses on the state of Integrate and Fire oscillators are sufficient for the synchronization of the relaxations of all the oscillators. This synchronization occurs in two forms depending on the system: either the oscillators evolve ``en bloc'' at the same phase and therefore relax together or the oscillators do not remain in phase but their relaxations occur always in stable avalanches. We prove that synchronization can occur independently of the convexity or concavity of the oscillators evolution function. Furthermore the presence of disorder, up to some level, is not only compatible with synchronization, but removes some possible degeneracy of identical systems and allows new mechanisms towards this state.Comment: 37 pages, 19 postscript figures, Latex 2

    Dynamically-Coupled Oscillators -- Cooperative Behavior via Dynamical Interaction --

    Full text link
    We propose a theoretical framework to study the cooperative behavior of dynamically coupled oscillators (DCOs) that possess dynamical interactions. Then, to understand synchronization phenomena in networks of interneurons which possess inhibitory interactions, we propose a DCO model with dynamics of interactions that tend to cause 180-degree phase lags. Employing an approach developed here, we demonstrate that although our model displays synchronization at high frequencies, it does not exhibit synchronization at low frequencies because this dynamical interaction does not cause a phase lag sufficiently large to cancel the effect of the inhibition. We interpret the disappearance of synchronization in our model with decreasing frequency as describing the breakdown of synchronization in the interneuron network of the CA1 area below the critical frequency of 20 Hz.Comment: 10 pages, 3 figure

    Breaking Synchrony by Heterogeneity in Complex Networks

    Full text link
    For networks of pulse-coupled oscillators with complex connectivity, we demonstrate that in the presence of coupling heterogeneity precisely timed periodic firing patterns replace the state of global synchrony that exists in homogenous networks only. With increasing disorder, these patterns persist until they reach a critical temporal extent that is of the order of the interaction delay. For stronger disorder these patterns cease to exist and only asynchronous, aperiodic states are observed. We derive self-consistency equations to predict the precise temporal structure of a pattern from the network heterogeneity. Moreover, we show how to design heterogenous coupling architectures to create an arbitrary prescribed pattern.Comment: 4 pages, 3 figure
    corecore